Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Illuminating the dark spaces of healthcare with ambient intelligence

Abstract

Advances in machine learning and contactless sensors have given rise to ambient intelligence—physical spaces that are sensitive and responsive to the presence of humans. Here we review how this technology could improve our understanding of the metaphorically dark, unobserved spaces of healthcare. In hospital spaces, early applications could soon enable more efficient clinical workflows and improved patient safety in intensive care units and operating rooms. In daily living spaces, ambient intelligence could prolong the independence of older individuals and improve the management of individuals with a chronic disease by understanding everyday behaviour. Similar to other technologies, transformation into clinical applications at scale must overcome challenges such as rigorous clinical validation, appropriate data privacy and model transparency. Thoughtful use of this technology would enable us to understand the complex interplay between the physical environment and health-critical human behaviours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Contactless sensors for ambient intelligence.
Fig. 2: Ambient intelligence for hospitals.
Fig. 3: Ambient intelligence for daily living spaces.
Fig. 4: Computational methods to protect privacy.

Similar content being viewed by others

References

  1. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015). This paper reviews developments in deep learning and explains common neural network architectures such as convolutional and recurrent neural networks when applied to visual and natural language-processing tasks.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349, 255–260 (2015).

    ADS  MathSciNet  CAS  MATH  PubMed  Google Scholar 

  3. Esteva, A. et al. A guide to deep learning in healthcare. Nat. Med. 25, 24–29 (2019). This perspective describes the use of computer vision, natural language processing, speech recognition and reinforcement learning for medical imaging tasks, electronic health record analysis, robotic-assisted surgery and genomic research.

    CAS  PubMed  Google Scholar 

  4. Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56 (2019). This review outlines how artificial intelligence is used by clinicians, patients and health systems to interpret medical images, find workflow efficiencies and promote patient self-care.

    CAS  PubMed  Google Scholar 

  5. Sutton, R. T. et al. An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digit. Med. 3, 17 (2020).

    PubMed  PubMed Central  Google Scholar 

  6. Yeung, S., Downing, N. L., Fei-Fei, L. & Milstein, A. Bedside computer vision — moving artificial intelligence from driver assistance to patient safety. N. Engl. J. Med. 378, 1271–1273 (2018).

    PubMed  Google Scholar 

  7. Haynes, A. B. et al. A surgical safety checklist to reduce morbidity and mortality in a global population. N. Engl. J. Med. 360, 491–499 (2009).

    CAS  PubMed  Google Scholar 

  8. Makary, M. A. & Daniel, M. Medical error—the third leading cause of death in the US. Br. Med. J. 353, i2139 (2016).

    Google Scholar 

  9. Tallentire, V. R., Smith, S. E., Skinner, J. & Cameron, H. S. Exploring error in team-based acute care scenarios: an observational study from the United Kingdom. Acad. Med. 87, 792–798 (2012).

    PubMed  Google Scholar 

  10. Yang, T. et al. Evaluation of medical malpractice litigations in China, 2002–2011. J. Forensic Sci. Med. 2, 185–189 (2016).

    Google Scholar 

  11. Pol, M. C., ter Riet, G., van Hartingsveldt, M., Kröse, B. & Buurman, B. M. Effectiveness of sensor monitoring in a rehabilitation programme for older patients after hip fracture: a three-arm stepped wedge randomised trial. Age Ageing 48, 650–657 (2019).

    PubMed  Google Scholar 

  12. Fritz, R. L. & Dermody, G. A nurse-driven method for developing artificial intelligence in “smart” homes for aging-in-place. Nurs. Outlook 67, 140–153 (2019).

    PubMed  Google Scholar 

  13. Kaye, J. A. et al. F5-05-04: ecologically valid assessment of life activities: unobtrusive continuous monitoring with sensors. Alzheimers Dement. 12, P374 (2016).

    Google Scholar 

  14. Acampora, G., Cook, D. J., Rashidi, P. & Vasilakos, A. V. A survey on ambient intelligence in health care. Proc IEEE Inst. Electr. Electron. Eng. 101, 2470–2494 (2013).

    PubMed  PubMed Central  Google Scholar 

  15. Cook, D. J., Duncan, G., Sprint, G. & Fritz, R. Using smart city technology to make healthcare smarter. Proc IEEE Inst. Electr. Electron. Eng. 106, 708–722 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. Centers for Disease Control and Prevention. National Health Interview Survey: Summary Health Statistics https://www.cdc.gov/nchs/nhis/shs.htm (2018).

  17. NHS Digital. Hospital Admitted Patient Care and Adult Critical Care Activity 2018–19 https://digital.nhs.uk/data-and-information/publications/statistical/hospital-admitted-patient-care-activity/2018-19 (NHS, 2019).

  18. Patel, R. S., Bachu, R., Adikey, A., Malik, M. & Shah, M. Factors related to physician burnout and its consequences: a review. Behav. Sci. (Basel) 8, 98 (2018).

    Google Scholar 

  19. Lyon, M. et al. Rural ED transfers due to lack of radiology services. Am. J. Emerg. Med. 33, 1630–1634 (2015).

    PubMed  Google Scholar 

  20. Adams, J. G. & Walls, R. M. Supporting the health care workforce during the COVID-19 global epidemic. J. Am. Med. Assoc. 323, 1439–1440 (2020).

    CAS  Google Scholar 

  21. Halpern, N. A., Goldman, D. A., Tan, K. S. & Pastores, S. M. Trends in critical care beds and use among population groups and Medicare and Medicaid beneficiaries in the United States: 2000–2010. Crit. Care Med. 44, 1490–1499 (2016).

    PubMed  PubMed Central  Google Scholar 

  22. Halpern, N. A. & Pastores, S. M. Critical care medicine in the United States 2000–2005: an analysis of bed numbers, occupancy rates, payer mix, and costs. Crit. Care Med. 38, 65–71 (2010).

    PubMed  Google Scholar 

  23. Hermans, G. et al. Acute outcomes and 1-year mortality of intensive care unit-acquired weakness. A cohort study and propensity-matched analysis. Am. J. Respir. Crit. Care Med. 190, 410–420 (2014).

    PubMed  Google Scholar 

  24. Zhang, L. et al. Early mobilization of critically ill patients in the intensive care unit: a systematic review and meta-analysis. PLoS ONE 14, e0223185 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Donchin, Y. et al. A look into the nature and causes of human errors in the intensive care unit. Crit. Care Med. 23, 294–300 (1995).

    CAS  PubMed  Google Scholar 

  26. Hodgson, C. L., Berney, S., Harrold, M., Saxena, M. & Bellomo, R. Clinical review: early patient mobilization in the ICU. Crit. Care 17, 207 (2013).

    PubMed  PubMed Central  Google Scholar 

  27. Verceles, A. C. & Hager, E. R. Use of accelerometry to monitor physical activity in critically ill subjects: a systematic review. Respir. Care 60, 1330–1336 (2015).

    PubMed  Google Scholar 

  28. Ma, A. J. et al. Measuring patient mobility in the ICU using a novel noninvasive sensor. Crit. Care Med. 45, 630–636 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. Yeung, S. et al. A computer vision system for deep learning-based detection of patient mobilization activities in the ICU. NPJ Digit. Med. 2, 11 (2019). This study used computer vision to simultaneously categorize patient mobilization activities in intensive care units and count the number of healthcare personnel involved in each activity.

    PubMed  PubMed Central  Google Scholar 

  30. Davoudi, A. et al. Intelligent ICU for autonomous patient monitoring using pervasive sensing and deep learning. Sci. Rep. 9, 8020 (2019).This study used cameras and wearable sensors to track the physical movement of delirious and non-delirious patients in an intensive care unit.

    ADS  PubMed  PubMed Central  Google Scholar 

  31. WHO. Report on the Burden of Endemic Health Care-associated Infection Worldwide https://apps.who.int/iris/handle/10665/80135 (2011).

  32. Vincent, J.-L. Nosocomial infections in adult intensive-care units. Lancet 361, 2068–2077 (2003).

    PubMed  Google Scholar 

  33. Gould, D. J., Moralejo, D., Drey, N., Chudleigh, J. H. & Taljaard, M. Interventions to improve hand hygiene compliance in patient care. Cochrane Database Syst. Rev. 9, CD005186 (2017).

    PubMed  Google Scholar 

  34. Srigley, J. A., Furness, C. D., Baker, G. R. & Gardam, M. Quantification of the Hawthorne effect in hand hygiene compliance monitoring using an electronic monitoring system: a retrospective cohort study. BMJ Qual. Saf. 23, 974–980 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Shirehjini, A. A. N., Yassine, A. & Shirmohammadi, S. Equipment location in hospitals using RFID-based positioning system. IEEE Trans. Inf. Technol. Biomed. 16, 1058–1069 (2012).

    PubMed  Google Scholar 

  36. Sax, H. et al. ‘My five moments for hand hygiene’: a user-centred design approach to understand, train, monitor and report hand hygiene. J. Hosp. Infect. 67, 9–21 (2007).

    CAS  PubMed  Google Scholar 

  37. Haque, A. et al. Towards vision-based smart hospitals: a system for tracking and monitoring hand hygiene compliance. In Proc. 2nd Machine Learning for Healthcare Conference 75–87 (PMLR, 2017). This study evaluated the performance of depth sensors and covert auditors at measuring hand hygiene compliance in a hospital unit.

  38. Singh, A. et al. Automatic detection of hand hygiene using computer vision technology. J. Am. Med. Inform. Assoc. https://doi.org/10.1093/jamia/ocaa115 (2020).

  39. Chen, J., Cremer, J. F., Zarei, K., Segre, A. M. & Polgreen, P. M. Using computer vision and depth sensing to measure healthcare worker-patient contacts and personal protective equipment adherence within hospital rooms. Open Forum Infect. Dis. 3, ofv200 (2016).

    PubMed  Google Scholar 

  40. Awwad, S., Tarvade, S., Piccardi, M. & Gattas, D. J. The use of privacy-protected computer vision to measure the quality of healthcare worker hand hygiene. Int. J. Qual. Health Care 31, 36–42 (2019).

    PubMed  Google Scholar 

  41. Weiser, T. G. et al. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet 372, 139–144 (2008).

    PubMed  Google Scholar 

  42. Anderson, O., Davis, R., Hanna, G. B. & Vincent, C. A. Surgical adverse events: a systematic review. Am. J. Surg. 206, 253–262 (2013).

    PubMed  Google Scholar 

  43. Bonrath, E. M., Dedy, N. J., Gordon, L. E. & Grantcharov, T. P. Comprehensive surgical coaching enhances surgical skill in the operating room: a randomized controlled trial. Ann. Surg. 262, 205–212 (2015).

    PubMed  Google Scholar 

  44. Vaidya, A. et al. Current status of technical skills assessment tools in surgery: a systematic review. J. Surg. Res. 246, 342–378 (2020).

    PubMed  Google Scholar 

  45. Ghasemloonia, A. et al. Surgical skill assessment using motion quality and smoothness. J. Surg. Educ. 74, 295–305 (2017).

    PubMed  Google Scholar 

  46. Khalid, S., Goldenberg, M., Grantcharov, T., Taati, B. & Rudzicz, F. Evaluation of deep learning models for identifying surgical actions and measuring performance. JAMA Netw. Open 3, e201664 (2020).

    PubMed  Google Scholar 

  47. Law, H., Ghani, K. & Deng, J. Surgeon Technical skill assessment using computer vision based analysis. In Proc. 2nd Machine Learning for Healthcare Conference 88–99 (PMLR, 2017).

  48. Jin, A. et al. Tool detection and operative skill assessment in surgical videos using region-based convolutional neural networks. In Proc. Winter Conference on Applications of Computer Vision 691–699 (IEEE, 2018).

  49. Twinanda, A. P. et al. EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36, 86–97 (2017).

    PubMed  Google Scholar 

  50. Hashimoto, D. A., Rosman, G., Rus, D. & Meireles, O. R. Artificial intelligence in surgery: promises and perils. Ann. Surg. 268, 70–76 (2018).

    PubMed  Google Scholar 

  51. Greenberg, C. C., Regenbogen, S. E., Lipsitz, S. R., Diaz-Flores, R. & Gawande, A. A. The frequency and significance of discrepancies in the surgical count. Ann. Surg. 248, 337–341 (2008).

    PubMed  Google Scholar 

  52. Agrawal, A. Counting matters: lessons from the root cause analysis of a retained surgical item. Jt. Comm. J. Qual. Patient Saf. 38, 566–574 (2012).

    PubMed  Google Scholar 

  53. Hempel, S. et al. Wrong-site surgery, retained surgical items, and surgical fires: a systematic review of surgical never events. JAMA Surg. 150, 796–805 (2015).

    PubMed  Google Scholar 

  54. Cima, R. R. et al. Using a data-matrix-coded sponge counting system across a surgical practice: impact after 18 months. Jt. Comm. J. Qual. Patient Saf. 37, 51–58 (2011).

    PubMed  Google Scholar 

  55. Rupp, C. C. et al. Effectiveness of a radiofrequency detection system as an adjunct to manual counting protocols for tracking surgical sponges: a prospective trial of 2,285 patients. J. Am. Coll. Surg. 215, 524–533 (2012).

    PubMed  Google Scholar 

  56. Kassahun, Y. et al. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int. J. Comput. Assist. Radiol. Surg. 11, 553–568 (2016).

    PubMed  Google Scholar 

  57. Kadkhodamohammadi, A., Gangi, A., de Mathelin, M. & Padoy, N. A multi-view RGB-D approach for human pose estimation in operating rooms. In Proc. Winter Conference on Applications of Computer Vision 363–372 (IEEE, 2017).

  58. Jung, J. J., Jüni, P., Lebovic, G. & Grantcharov, T. First-year analysis of the operating room black box study. Ann. Surg. 271, 122–127 (2020).

    PubMed  Google Scholar 

  59. Joukes, E., Abu-Hanna, A., Cornet, R. & de Keizer, N. F. Time spent on dedicated patient care and documentation tasks before and after the introduction of a structured and standardized electronic health record. Appl. Clin. Inform. 9, 46–53 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Heaton, H. A., Castaneda-Guarderas, A., Trotter, E. R., Erwin, P. J. & Bellolio, M. F. Effect of scribes on patient throughput, revenue, and patient and provider satisfaction: a systematic review and meta-analysis. Am. J. Emerg. Med. 34, 2018–2028 (2016).

    PubMed  Google Scholar 

  61. Rich, N. The impact of working as a medical scribe. Am. J. Emerg. Med. 35, 513 (2017).

    Google Scholar 

  62. Boulton, C. How Google Glass automates patient documentation for dignity health. Wall Street Journal (16 June 2014).

  63. Blackley, S. V., Huynh, J., Wang, L., Korach, Z. & Zhou, L. Speech recognition for clinical documentation from 1990 to 2018: a systematic review. J. Am. Med. Inform. Assoc. 26, 324–338 (2019).

    PubMed  PubMed Central  Google Scholar 

  64. Chiu, C.-C. et al. Speech recognition for medical conversations. In Proc. 18th Annual Conference of the International Speech Communication Association 2972–2976 (ISCA, 2018). This paper developed a speech-recognition algorithm to transcribe anonymized conversations between patients and clinicians.

  65. Pranaat, R. et al. Use of simulation based on an electronic health records environment to evaluate the structure and accuracy of notes generated by medical scribes: proof-of-concept study. JMIR Med. Inform. 5, e30 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. Kaplan, R. S. et al. Using time-driven activity-based costing to identify value improvement opportunities in healthcare. J. Healthc. Manag. 59, 399–412 (2014).

    PubMed  Google Scholar 

  67. Porter, M. E. Value-based health care delivery. Ann. Surg. 248, 503–509 (2008).

    PubMed  Google Scholar 

  68. Keel, G., Savage, C., Rafiq, M. & Mazzocato, P. Time-driven activity-based costing in health care: a systematic review of the literature. Health Policy 121, 755–763 (2017).

    PubMed  Google Scholar 

  69. French, K. E. et al. Measuring the value of process improvement initiatives in a preoperative assessment center using time-driven activity-based costing. Healthcare 1, 136–142 (2013).

    PubMed  Google Scholar 

  70. Sánchez, D., Tentori, M. & Favela, J. Activity recognition for the smart hospital. IEEE Intelligent Systems 23, 50–57 (2008).

    Google Scholar 

  71. United Nations. World Population Ageing 2019 https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/files/documents/2020/Jan/un_2019_worldpopulationageing_report.pdf (2020).

  72. Mamikonian-Zarpas, A. & Laganá, L. The relationship between older adults’ risk for a future fall and difficulty performing activities of daily living. J. Aging Gerontol. 3, 8–16 (2015).

    PubMed  PubMed Central  Google Scholar 

  73. Stineman, M. G. et al. All-cause 1-, 5-, and 10-year mortality in elderly people according to activities of daily living stage. J. Am. Geriatr. Soc. 60, 485–492 (2012).

    PubMed  PubMed Central  Google Scholar 

  74. Phelan, E. A., Williams, B., Penninx, B. W. J. H., LoGerfo, J. P. & Leveille, S. G. Activities of daily living function and disability in older adults in a randomized trial of the health enhancement program. J. Gerontol. A 59, M838–M843 (2004).

    Google Scholar 

  75. Carlsson, G., Haak, M., Nygren, C. & Iwarsson, S. Self-reported versus professionally assessed functional limitations in community-dwelling very old individuals. Int. J. Rehabil. Res. 35, 299–304 (2012).

    PubMed  Google Scholar 

  76. Wang, Z., Yang, Z. & Dong, T. A review of wearable technologies for elderly care that can accurately track indoor position, recognize physical activities and monitor vital signs in real time. Sensors 17, 341 (2017).

    CAS  PubMed Central  Google Scholar 

  77. Katz, S. Assessing self-maintenance: activities of daily living, mobility, and instrumental activities of daily living. J. Am. Geriatr. Soc. 31, 721–727 (1983).

    CAS  PubMed  Google Scholar 

  78. Uddin, M. Z., Khaksar, W. & Torresen, J. Ambient sensors for elderly care and independent living: a survey. Sensors 18, 2027 (2018).

    PubMed Central  Google Scholar 

  79. Luo, Z. et al. Computer vision-based descriptive analytics of seniors’ daily activities for long-term health monitoring. In Proc. 3rd Machine Learning for Healthcare Conference 1–18 (PMLR, 2018). This study created spatial and temporal summaries of activities of daily living using a depth and thermal sensor inside the bedroom of an older resident.

  80. Cheng, H., Liu, Z., Zhao, Y., Ye, G. & Sun, X. Real world activity summary for senior home monitoring. Multimedia Tools Appl. 70, 177–197 (2014).

    Google Scholar 

  81. Lee, M.-T., Jang, Y. & Chang, W.-Y. How do impairments in cognitive functions affect activities of daily living functions in older adults? PLoS ONE 14, e0218112 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen, J., Zhang, J., Kam, A. H. & Shue, L. An automatic acoustic bathroom monitoring system. In Proc. International Symposium on Circuits and Systems 1750–1753 (IEEE, 2005).

  83. Shrestha, A. et al. Elderly care: activities of daily living classification with an S band radar. J. Eng. 2019, 7601–7606 (2019).

    Google Scholar 

  84. Ganz, D. A. & Latham, N. K. Prevention of falls in community-dwelling older adults. N. Engl. J. Med. 382, 734–743 (2020).

    PubMed  Google Scholar 

  85. Bergen, G., Stevens, M. R. & Burns, E. R. Falls and fall injuries among adults aged ≥65 years — United States, 2014. MMWR Morb. Mortal. Wkly. Rep. 65, 993–998 (2016).

    PubMed  Google Scholar 

  86. Wild, D., Nayak, U. S. & Isaacs, B. How dangerous are falls in old people at home? Br. Med. J. (Clin. Res. Ed.) 282, 266–268 (1981).

    CAS  Google Scholar 

  87. Scheffer, A. C., Schuurmans, M. J., van Dijk, N., van der Hooft, T. & de Rooij, S. E. Fear of falling: measurement strategy, prevalence, risk factors and consequences among older persons. Age Ageing 37, 19–24 (2008).

    PubMed  Google Scholar 

  88. Pol, M. et al. Older people’s perspectives regarding the use of sensor monitoring in their home. Gerontologist 56, 485–493 (2016).

    PubMed  Google Scholar 

  89. Erol, B., Amin, M. G. & Boashash, B. Range-Doppler radar sensor fusion for fall detection. In Proc. IEEE Radar Conference 819–824 (IEEE, 2017).

  90. Chaudhuri, S., Thompson, H. & Demiris, G. Fall detection devices and their use with older adults: a systematic review. J. Geriatr. Phys. Ther. 37, 178–196 (2014).

    PubMed  PubMed Central  Google Scholar 

  91. Tegou, T. et al. A low-cost indoor activity monitoring system for detecting frailty in older adults. Sensors 19, 452 (2019).

    PubMed Central  Google Scholar 

  92. Rantz, M. et al. Automated in-home fall risk assessment and detection sensor system for elders. Gerontologist 55, S78–S87 (2015).

    PubMed  PubMed Central  Google Scholar 

  93. Su, B. Y., Ho, K. C., Rantz, M. J. & Skubic, M. Doppler radar fall activity detection using the wavelet transform. IEEE Trans. Biomed. Eng. 62, 865–875 (2015).

    PubMed  Google Scholar 

  94. Stone, E. E. & Skubic, M. Fall detection in homes of older adults using the Microsoft Kinect. IEEE J. Biomed. Health Inform. 19, 290–301 (2015).

    PubMed  Google Scholar 

  95. Rantz, M. et al. Randomized trial of intelligent sensor system for early illness alerts in senior housing. J. Am. Med. Dir. Assoc. 18, 860–870 (2017). This randomized trial investigated the clinical efficacy of a real-time intervention system—triggered by abnormal gait patterns, as detected by ambient sensors—on the walking ability of older individuals at home.

    PubMed  PubMed Central  Google Scholar 

  96. Kwolek, B. & Kepski, M. Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Programs Biomed. 117, 489–501 (2014).

    PubMed  Google Scholar 

  97. Wren, T. A. L., Gorton, G. E. III, Ounpuu, S. & Tucker, C. A. Efficacy of clinical gait analysis: a systematic review. Gait Posture 34, 149–153 (2011).

    PubMed  Google Scholar 

  98. Wren, T. A. et al. Outcomes of lower extremity orthopedic surgery in ambulatory children with cerebral palsy with and without gait analysis: results of a randomized controlled trial. Gait Posture 38, 236–241 (2013).

    PubMed  Google Scholar 

  99. Del Din, S. et al. Gait analysis with wearables predicts conversion to Parkinson disease. Ann. Neurol. 86, 357–367 (2019).

    PubMed  PubMed Central  Google Scholar 

  100. Kidziński, Ł., Delp, S. & Schwartz, M. Automatic real-time gait event detection in children using deep neural networks. PLoS ONE 14, e0211466 (2019).

    PubMed  PubMed Central  Google Scholar 

  101. Díaz, S., Stephenson, J. B. & Labrador, M. A. Use of wearable sensor technology in gait, balance, and range of motion analysis. Appl. Sci. 10, 234 (2020).

    Google Scholar 

  102. Juen, J., Cheng, Q., Prieto-Centurion, V., Krishnan, J. A. & Schatz, B. Health monitors for chronic disease by gait analysis with mobile phones. Telemed. J. E Health 20, 1035–1041 (2014).

    PubMed  PubMed Central  Google Scholar 

  103. Kononova, A. et al. The use of wearable activity trackers among older adults: focus group study of tracker perceptions, motivators, and barriers in the maintenance stage of behavior change. JMIR Mhealth Uhealth 7, e9832 (2019).

    PubMed  PubMed Central  Google Scholar 

  104. Da Gama, A., Fallavollita, P., Teichrieb, V., & Navab, N. Motor rehabilitation using Kinect: a systematic review. Games Health J. 4, 123–135 (2015).

    PubMed  Google Scholar 

  105. Cho, C.-W., Chao, W.-H., Lin, S.-H. & Chen, Y.-Y. A vision-based analysis system for gait recognition in patients with Parkinson’s disease. Expert Syst. Appl. 36, 7033–7039 (2009).

    Google Scholar 

  106. Seifert, A., Zoubir, A. M. & Amin, M. G. Detection of gait asymmetry using indoor Doppler radar. In Proc. IEEE Radar Conference 1–6 (IEEE, 2019).

  107. Altaf, M. U. B., Butko, T., Juang, B. H. & Juang, B.-H. Acoustic gaits: gait analysis with footstep sounds. IEEE Trans. Biomed. Eng. 62, 2001–2011 (2015).

    PubMed  Google Scholar 

  108. Galna, B. et al. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture 39, 1062–1068 (2014).

    PubMed  Google Scholar 

  109. Jaume-i-Capó, A., Martínez-Bueso, P., Moyà-Alcover, B. & Varona, J. Interactive rehabilitation system for improvement of balance therapies in people with cerebral palsy. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 419–427 (2014).

    PubMed  Google Scholar 

  110. Tinetti, M. E., Williams, T. F. & Mayewski, R. Fall risk index for elderly patients based on number of chronic disabilities. Am. J. Med. 80, 429–434 (1986).

    CAS  PubMed  Google Scholar 

  111. Wang, C. et al. Multimodal gait analysis based on wearable inertial and microphone sensors. In Proc. IEEE SmartWorld 1–8 (2017).

  112. Mental Health America. Mental Health in America - Adult Data 2018 https://www.mhanational.org/issues/mental-health-america-adult-data-2018 (2018).

  113. Wittchen, H. U. et al. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 21, 655–679 (2011).

    CAS  PubMed  Google Scholar 

  114. Snowden, L. R. Bias in mental health assessment and intervention: theory and evidence. Am. J. Public Health 93, 239–243 (2003).

    PubMed  PubMed Central  Google Scholar 

  115. Shatte, A. B. R., Hutchinson, D. M. & Teague, S. J. Machine learning in mental health: a scoping review of methods and applications. Psychol. Med. 49, 1426–1448 (2019).

    PubMed  Google Scholar 

  116. Chakraborty, D. et al. Assessment and prediction of negative symptoms of schizophrenia from RGB+ D movement signals. In Proc. 19th International Workshop on Multimedia Signal Processing 1–6 (2017).

  117. Pestian, J. P. et al. A controlled trial using natural language processing to examine the language of suicidal adolescents in the emergency department. Suicide Life Threat. Behav. 46, 154–159 (2016).

    PubMed  Google Scholar 

  118. Lutz, W., Leon, S. C., Martinovich, Z., Lyons, J. S. & Stiles, W. B. Therapist effects in outpatient psychotherapy: a three-level growth curve approach. J. Couns. Psychol. 54, 32–39 (2007).

    Google Scholar 

  119. Miner, A. S. et al. Assessing the accuracy of automatic speech recognition for psychotherapy. NPJ Digit. Med. 3, 82 (2020).

    PubMed  PubMed Central  Google Scholar 

  120. Xiao, B., Imel, Z. E., Georgiou, P. G., Atkins, D. C. & Narayanan, S. S. “Rate my therapist”: automated detection of empathy in drug and alcohol counseling via speech and language processing. PLoS ONE 10, e0143055 (2015).

    PubMed  PubMed Central  Google Scholar 

  121. Ewbank, M. P. et al. Quantifying the association between psychotherapy content and clinical outcomes using deep learning. JAMA Psychiatry 77, 35–43 (2020).

    PubMed  Google Scholar 

  122. Sadeghian, A., Alahi, A. & Savarese, S. Tracking the untrackable: learning to track multiple cues with long-term dependencies. In Proc. Conference on Computer Vision and Pattern Recognition 300–311 (IEEE, 2017).

  123. Liu, G. et al. Image inpainting for irregular holes using partial convolutions. In Proc. 15th European Conference on Computer Vision 89–105 (Springer, 2018).

  124. Marafioti, A., Perraudin, N., Holighaus, N. & Majdak, P. A context encoder for audio inpainting. IEEE/ACM Trans. Audio Speech Lang. Process. 27, 2362–2372 (2019).

    Google Scholar 

  125. Chen, Y., Tian, Y. & He, M. Monocular human pose estimation: a survey of deep learning-based methods. Comput. Vis. Image Underst. 192, 102897 (2020).

    Google Scholar 

  126. Krishna, R. et al. Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123, 32–73 (2017).

    MathSciNet  Google Scholar 

  127. Johnson, J. et al. Image retrieval using scene graphs. In Proc. Conference on Computer Vision and Pattern Recognition 3668–3678 (IEEE, 2015).

  128. Shi, J., Zhang, H. & Li, J. Explainable and explicit visual reasoning over scene graphs. In Proc. Conference on Computer Vision and Pattern Recognition 8368–8376 (IEEE/CVF, 2019).

  129. Halamka, J. D. Early experiences with big data at an academic medical center. Health Aff. 33, 1132–1138 (2014).

    Google Scholar 

  130. Verbraeken, J. et al. A survey on distributed machine learning. ACM Comput. Surv. 53, 30 (2020).

    Google Scholar 

  131. You, Y. et al. Large batch optimization for deep learning: training BERT in 76 minutes. In Proc. 8th International Conference on Learning Representations 1–38 (2020).

  132. Kitaev, N., Kaiser, Ł. & Levskaya, A. Reformer: the efficient transformer. In Proc. 8th International Conference on Learning Representations 1–12 (2020).

  133. Heilbron, F., Niebles, J. & Ghanem, B. Fast temporal activity proposals for efficient detection of human actions in untrimmed videos. In Proc. Conference on Computer Vision and Pattern Recognition 1914–1923 (IEEE, 2016).

  134. Zhu, Y., Lan, Z., Newsam, S. & Hauptmann, A. Hidden two-stream convolutional networks for action recognition. In Proc. 14th Asian Conference on Computer Vision 363–378 (Springer, 2019).

  135. Han, S., Mao, H. & Dally, W. J. Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. In Proc. 4th International Conference on Learning Representations 1–14 (2016). This paper introduced a method to compress neural network models and reduce their computational and storage requirements.

  136. Micikeviciusd, P. et al. Mixed precision training. In Proc. 6th International Conference on Learning Representations 1–12 (2018).

  137. Yu, G. & Yuan, J. Fast action proposals for human action detection and search. In Proc. Conference on Computer Vision and Pattern Recognition 1302–1311 (IEEE, 2015).

  138. Zou, J. & Schiebinger, L. AI can be sexist and racist — it’s time to make it fair. Nature 559, 324–326 (2018).

    ADS  CAS  PubMed  Google Scholar 

  139. Pleiss, G., Raghavan, M., Wu, F., Kleinberg, J. & Weinberger, K. Q. On fairness and calibration. Adv. Neural Inf. Process. Syst. 30, 5680–5689 (2017).

    Google Scholar 

  140. Neyshabur, B., Bhojanapalli, S., McAllester, D. & Srebro, N. Exploring generalization in deep learning. Adv. Neural Inf. Process. Syst. 30, 5947–5956 (2017).

  141. Howard, J. & Ruder, S. Universal language model fine-tuning for text classification. In Proc. 56th Annual Meeting of the Association for Computational Linguistics 328–339 (2018).

  142. Pan, S. J. & Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2010).

    Google Scholar 

  143. Patel, V. M., Gopalan, R., Li, R. & Chellappa, R. Visual domain adaptation: a survey of recent advances. IEEE Signal Process. Mag. 32, 53–69 (2015).

    ADS  Google Scholar 

  144. Wang, Y., Kwok, J., Ni, L. M. & Yao, Q. Generalizing from a few examples: a survey on few-shot learning. ACM Comput. Surv. 53, 63 (2020).

    Google Scholar 

  145. Jobin, A., Ienca, M. & Vayena, E. The global landscape of AI ethics guidelines. Nat. Mach. Intell. 1, 389–399 (2019).

    Google Scholar 

  146. Li, C., Lubecke, V. M., Boric-Lubecke, O. & Lin, J. A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring. IEEE Trans. Microw. Theory Tech. 61, 2046–2060 (2013).

    ADS  Google Scholar 

  147. Rockhold, F., Nisen, P. & Freeman, A. Data sharing at a crossroads. N. Engl. J. Med. 375, 1115–1117 (2016).

    PubMed  Google Scholar 

  148. Wiens, J. et al. Do no harm: a roadmap for responsible machine learning for health care. Nat. Med. 25, 1337–1340 (2019).

    CAS  PubMed  Google Scholar 

  149. El Emam, K., Jonker, E., Arbuckle, L. & Malin, B. A systematic review of re-identification attacks on health data. PLoS ONE 6, e28071 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  150. Nasrollahi, K. & Moeslund, T. Super-resolution: a comprehensive survey. Mach. Vis. Appl. 25, 1423–1468 (2014).

    Google Scholar 

  151. Brewster, T. How an amateur rap crew stole surveillance tech that tracks almost every American. Forbes Magazine (12 October 2018).

  152. Cutler, J. E. How can patients make money off their medical data? Bloomberg Law (29 January 2019).

  153. Cahan, E. M., Hernandez-Boussard, T., Thadaney-Israni, S. & Rubin, D. L. Putting the data before the algorithm in big data addressing personalized healthcare. NPJ Digit. Med. 2, 78 (2019).

    PubMed  PubMed Central  Google Scholar 

  154. Rajkomar, A., Hardt, M., Howell, M. D., Corrado, G. & Chin, M. H. Ensuring fairness in machine learning to advance health equity. Ann. Intern. Med. 169, 866–872 (2018).

    PubMed  PubMed Central  Google Scholar 

  155. Char, D. S., Shah, N. H. & Magnus, D. Implementing machine learning in health care — addressing ethical challenges. N. Engl. J. Med. 378, 981–983 (2018).

    PubMed  PubMed Central  Google Scholar 

  156. Buolamwini, J. & Gebru, T. Gender shades: intersectional accuracy disparities in commercial gender classification. In Proc. 1st Conference on Fairness, Accountability and Transparency 77–91 (2018).

  157. Chen, I. Y., Szolovits, P. & Ghassemi, M. Can AI help reduce disparities in general medical and mental health care? AMA J. Ethics 21, E167–E179 (2019).

    PubMed  Google Scholar 

  158. Wolff, R. F. et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann. Intern. Med. 170, 51–58 (2019).

    PubMed  Google Scholar 

  159. Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R. & Yu, B. Definitions, methods, and applications in interpretable machine learning. Proc. Natl Acad. Sci. USA 116, 22071–22080 (2019). This article proposed a framework for evaluating model interpretability through predictive accuracy, descriptive accuracy and relevancy.

    MathSciNet  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  160. He, J. et al. The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 25, 30–36 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Collins, G. S., Reitsma, J. B., Altman, D. G. & Moons, K. G. M. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Ann. Intern. Med. 162, 55–63 (2015).

    PubMed  Google Scholar 

  162. Mitchell, M. et al. Model cards for model reporting. In Proc. 2nd Conference on Fairness, Accountability, and Transparency 220–229 (2019).

  163. Thomas, R. et al. Deliberative democracy and cancer screening consent: a randomised control trial of the effect of a community jury on men’s knowledge about and intentions to participate in PSA screening. BMJ Open 4, e005691 (2014).

    PubMed  PubMed Central  Google Scholar 

  164. Otto, J. L., Holodniy, M. & DeFraites, R. F. Public health practice is not research. Am. J. Public Health 104, 596–602 (2014).

    PubMed  PubMed Central  Google Scholar 

  165. Gerke, S., Yeung, S. & Cohen, I. G. Ethical and legal aspects of ambient intelligence in hospitals. J. Am. Med. Assoc. 323, 601–602 (2020).

    Google Scholar 

  166. Kim, J. W., Jang, B. & Yoo, H. Privacy-preserving aggregation of personal health data streams. PLoS ONE 13, e0207639 (2018).

    PubMed  PubMed Central  Google Scholar 

  167. van der Maaten, L., Postma, E. & van den Herik, J. Dimensionality reduction: a comparative. J. Mach. Learn. Res. 10, 13 (2009).

    Google Scholar 

  168. Kocabas, M., Athanasiou, N. & Black, M. J. VIBE: video inference for human body pose and shape estimation. In Proc. Conference on Computer Vision and Pattern Recognition 5253–5263 (IEEE/CVF, 2020).

  169. McMahan, H. B., Moore, E., Ramage, D., Hampson, S. & Arcas, B. A. Communication-efficient learning of deep networks from decentralized data. In Proc. 20th International Conference on Artificial Intelligence and Statistics 1273–1282 (PMLR, 2017). This paper proposed federated learning, a method for training a shared model while the data is distributed across multiple client devices.

  170. Gentry, C. Fully homomorphic encryption using ideal lattices. In Proc 41st Symposium on Theory of Computing 169–178 (ACM, 2009). This paper proposed the first fully homomorphic encryption scheme that supports addition and multiplication on encrypted data.

  171. McCoy, S. T. Aboard USNS Comfort (US Navy, 2003).

Download references

Acknowledgements

We thank A. Kaushal, D. C. Magnus, G. Burke, K. Schulman and M. Hutson for providing comments on this paper. We also thank our clinical collaborators over the years, including A. S. Miner, A. Singh, B. Campbell, D. F. Amanatullah, F. R. Salipur, H. Rubin, J. Jopling, K. Deru, N. L. Downing, R. Nazerali, T. Platchek and W. Beninati, and our technical collaborators over the years, including A. Alahi, A. Rege, B. Liu, B. Peng, D. Zhao, E. Chou, E. Adeli, G. M. Bianconi, G. Pusiol, H. Cai, J. Beal, J.-T. Hsieh, M. Guo, R. Mehra, S. Mehra, S. Yeung and Z. Luo. A.H.’s graduate work was partially supported by the US Office of Naval Research (grant N00014-16-1-2127) and the Stanford Institute for Human-Centered Artificial Intelligence.

Author information

Authors and Affiliations

Authors

Contributions

A.H., A.M. and L.F-F. conceptualized the paper and its structure. A.H. and L.F.-F. wrote the paper. A.H. created the figures. A.M. provided substantial additions and edits. All authors contributed to multiple parts of the paper, as well as the final style and overall content.

Corresponding author

Correspondence to Li Fei-Fei.

Ethics declarations

Competing interests

A.M. has financial interests in Prealize Health. L.F.-F. and A.M. have financial interests in Dawnlight Technologies. A.H. declares no competing interests.

Additional information

Peer review information Nature thanks Andrew Beam, Eric Topol and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Note 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haque, A., Milstein, A. & Fei-Fei, L. Illuminating the dark spaces of healthcare with ambient intelligence. Nature 585, 193–202 (2020). https://doi.org/10.1038/s41586-020-2669-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-2669-y

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics