
1

An Empirical Study of C++ Vulnerabilities in
Crowd-Sourced Code Examples

Morteza Verdi, Ashkan Sami, Jafar Akhondali, Foutse Khomh, Gias Uddin, and Alireza Karami Motlagh

Abstract—Software developers share programming solutions in Q&A sites like Stack Overflow, Stack Exchange, Android forum, and
so on. The reuse of crowd-sourced code snippets can facilitate rapid prototyping. However, recent research shows that the shared
code snippets may be of low quality and can even contain vulnerabilities. This paper aims to understand the nature and the
prevalence of security vulnerabilities in crowd-sourced code examples. To achieve this goal, we investigate security vulnerabilities in
the C++ code snippets shared on Stack Overflow over a period of 10 years. In collaborative sessions involving multiple human coders,
we manually assessed each code snippet for security vulnerabilities following CWE (Common Weakness Enumeration) guidelines.
From the 72,483 reviewed code snippets used in at least one project hosted on GitHub, we found a total of 99 vulnerable code
snippets categorized into 31 types. Many of the investigated code snippets are still not corrected on Stack Overflow. The 99
vulnerable code snippets found in Stack Overflow were reused in a total of 2859 GitHub projects. To help improve the quality of code
snippets shared on Stack Overflow, we developed a browser extension that allows Stack Overflow users to be notified for
vulnerabilities in code snippets when they see them on the platform.

Index Terms—Stack Overflow, Software Security, C++, SOTorrent, Vulnerability Migration, GitHub, Vulnerability Evolution

F

1 INTRODUCTION

A major goal of software development is to deliver high
quality software in timely and cost-efficient manner. Code
reuse is an accepted practice and an essential approach to
achieve this premise [1]. The reused code snippets come
from many different sources and in different forms, e.g.,
third-party library [2], open source software [3], and Ques-
tion and Answer (Q&A) websites such as Stack Overflow
[4], [5]. Sharing code snippets and code examples is also a
common learning practice [6]. Novices and even more
senior developers leverage code examples and
explanations shared on platforms like Stack Overflow, to
learn how to perform new programming tasks or use certain
APIs [1], [7], [8], [9]. Multiple studies [10], [11], [12] have
investigated knowledge flow and knowledge sharing from
Stack Overflow answers to repositories of open source
software hosted in GitHub. They report that code snippets
found on Stack Overflow can be toxic, i.e., of poor quality,
and can potentially lead to license violations [12], [13]. An
important aspect of quality that has not been investigated in
details by the research com-munity is security. If vulnerable
codes snippets are migrated from Stack Overflow to
applications, these applications will be prone to attacks.

M. Verdi is with Shiraz University, Iran. E-mail: m.verdi@shirazu.ac.ir
A. Sami (Corresponding Author) is with Shiraz University, Iran. E-mail:
sami@shirazu.ac.ir
J. Akhondali is with Shiraz University, Iran. E-mail: ja-
far.akhondali@yahoo.com
F. Khomh is with Polytechnique Montreal, Quebec Canada. E-mail:
foutse.khomh@polymtl.ca
G. Uddin is with University of Calgary, Alberta Canada. Email:
gias.uddin@ucalgary.ca
A. Karami Motlagh is with Shiraz University, Iran. E-mail:
alireza.karami.m@gmail.com

The danger of copy pasting insecure code from Stack

Overflow was recently raised by Fischer et al. [8], who found
that vulnerable Android code snippets from Stack Overflow are
reused in popular Android apps. We are, however, aware of no
previous study that specifically fo-cused on the vulnerability of
C++ code snippets shared in Stack Overflow and whether and
how such vulnerable code snippets may have migrated to open
source software repositories in GitHub. This insight is
important because such vulnerable software repositories then
can be reused by other software repositories, which given the
popularity of GitHub, is entirely possible. C++ is the fourth most
popular programming language [14]. C++ is the language of
choice for embedded, resource-constrained programs. It is
exten-sively used in large and distributed systems.
Vulnerabilities in C++ code snippets are therefore likely to have
a major impact. However, to the best of our knowledge, no
study has examined the security aspects of C++ Stack
Overflow code snippets and their impact on open source
software projects. This paper aims to fill this gap in the
literature. More specif-ically, we aim to understand the nature
and the prevalence of security vulnerabilities in code examples
shared on Stack Overflow. To achieve this goal, we empirically
study C++ vulnerabilities in code examples shared on Stack
Overflow along the following two dimensions.

Prevalence:] We review the C++ vulnerability types con-

tained in a Stack Overflow data-set named SOTorrent
[15], [16] and analyze their evolution over time; in
particular their migration to GitHub projects.
From 72,483 C++ code snippets reused in at least one
GitHub project, we found 99 vulnerable code snippets
belonging to 31 different types of vulnerabilities.

Propagation: We investigate how the vulnerable code
snip-pets were reused in GitHub repositories.

2
TABLE 1: Research contributions made in this paper to understand the prevalence and propagation of C++ vulnerabilities
in crowd-Sourced code examples

Type Research Contribution Research Advancement

Prevalence: Evidence of the Prevalence of Vulnerable C++ Code Reusability of code/software is important to support modern day rapid software
Empirical in Stack Overflow. We analyzed C++ code snippets development [1] [2] [3] [4], [5] [6]. Significant research efforts are devoted to
Evidence contained in answers posted on Stack Overflow and produce tools and techniques that can be used to produce live software docu-
from Stack identified the vulnerabilities that they contain. mentation from Stack Overflow [19], or to detect/synthesize high quality posts
Overflow in Stack Overflow to offer answers to a question [20], [21], [22], [23], [24]. Such

 tools and documentation from forums are important due to the shortcomings in
 software official documentation [25]. Our study recommends that such techniques
 can be further improved by adding security checks (e.g., for C++ code snippets)
 into the overall documentation or tool development process.

Propagation: Evidence of the propagation of Vulnerable C++ Code
Empirical snippets from Stack Overflow to GitHub Repositories.
Evidence We tracked all the vulnerable C++ code snippets found

from Stack on Stack Overflow to their reusing projects on
GitHub.

Overflow We conducted a survey of GitHub developers who
and GitHub copied Vulnerable Code from Stack Overflow to their

GitHub repositories.

One of the challenges in software is the reuse of vulnerable codes to accelerate
the development of a software product, which ultimately leads to a decrease in
software quality [8], [9]. In particular, research shows that developers in GitHub
frequently visits developer forums like Stack Overflow to complete their coding
tasks [26], and that common misuse patterns in code can be shared between the
two sites frequently [27]. Our study complements the existing research by also
showing that such phenomenon also exists for C++ code snippets, one of the
most used languages in mission-critical systems.

The 99 identified vulnerable code snippets are used in
2589 GitHub files. The most common vulnerability
propagated from Stack Overflow to GitHub is CWE-150
(Improper neutralization of space/meta/control).

To assist developers in reusing code from Stack Overflow
safely, we developed a browser extension that allows
check-ing for vulnerabilities in code snippets when they see
vul-nerable code snippets on Stack Overflow.

Replication Package. The corresponding data, survey
mate-rials, and source code are shared in our GitHub and
Zenodo repositories [17], [18].

Paper Organization. Section 2 provides background infor-
mation about code reuse and discusses the related literature.
Section 3 introduces our research questions, data collection,
and data processing. Sections 4 and 5 discuss the obtained
results, while Section 6 presents the results of a survey of
GitHub developers and a browser plug-in that we de-veloped
based on the survey findings. Section 7 discusses threats to
the validity. Section 8 concludes the paper.

2 BACKGROUND AND RELATED WORK

In this section, we provide background information about
security vulnerabilities and review the related literature.

2.1 CWE (Common Weakness Enumeration)

CWE is a community-developed list of common software
security weaknesses. It serves as a common reference, a
measuring stick for software security tools, and as a base-
line for weakness identification, mitigation, and prevention
efforts. It is regarded as an universal online dictionary of
weaknesses that have been found in computer software.
The purpose of CWE is to facilitate the effective use of tools
that can identify, find and resolve bugs, vulnerabilities and

exposures, in computer software before the programs are
distributed to the public.

2.2 Reusing of Code Shared on Stack Overflow

Stack Overflow is regarded as the most popular question
and answer website for software developers [16]. Software
developers benefit from Stack Overflow posts, while pro-
gramming [8], [12], [13], [28], [29], and read about the
technologies and tools needed for development [30], [31],
[32]. Thus, research on Stack Overflow is of high
importance in software community.

Developers create and maintain software by standing on
the shoulders of others [33]; they reuse components and
libraries, and mine the Web for information that can help
them in their tasks [34]. For help with their code, developers
often turn to programming question and answer (Q&A)
communities, most visible of which is Stack Overflow [35],
[36]. Xia et al. [11] show that a large number of open source
systems reuse outdated third-party libraries, which can lead to
harmful effects on the software, because they may introduce
security flaws in the software. Abdalkareem et al. [1] examined
F-Droid repositories, and identified clones between Stack
Overflow posts and Android apps. They observed that copied
code from Stack Overflow posts can have an adverse effect on
the quality of applications. Yang et al. [10] analyzed 909k non-
fork Python projects hosted on GitHub, which contain 290M
function definitions, and 1.9M Python code snippets reused
from Stack Overflow. They performed a quantitative analysis of
block-level code cloning intra and inter Stack Overflow and
GitHub. Nishi et al. [37] studied code duplication between two
popular sources of software development information: Stack
Over-flow and software development tutorials, to understand
the evolution of duplicated information overtime. An et al. [13]
investigated clones between 399 Android apps and Stack
Overflow posts. They found 1,226 code snippets which were
reused from 68 Android apps. This reused of code snippets
resulted in 1,279 cases of potential license violations. Baltes

et al. [38] surveyed Stack Overflow users to understand the
usage and attribution of code snippets in Stack Overflow.
Among 122 respondents, 79% reported that they copied
code from Stack Overflow no later than a month ago, and
39% not later than a week ago. Half of them (49%) copied
the code without attributing the original Stack Overflow
post, while the others added a source code comment with a
link to the original Stack Overflow post.

Our study differs from the above studies in the following
three aspects: 1) Previous studies have not investigated C++
programming language vulnerabilities in Stack Overflow.
2) Previous studies have not examined the relationship
between Stack Overflow C++ posts and open source GitHub
projects as well as migration of existing vulnerabilities through
the reuse of Stack Overflow code snippets in open source
GitHub projects thoroughly. 3) In this study, we have also
analyzed the evolution of vulnerabilities in C++ Stack Overflow
posts. No previous work analyzed the evolution of
vulnerabilities within 10 years in Stack Overflow and their
migrations to real-world projects.

2.3 Security Challenges of Code in Stack Overflow

Several studies have reported the presence of insecure code
in some highly up-voted and accepted answers on Stack
Overflow [8], [39], [40]. Rahman [41] applied topic model-ing
on security-related discussions in Stack Overflow. They
observed that the security topics can be grouped into five
categories: 1) web security, 2) access control, 3) implementa-
tion specific, 4) mobile security, and 5) system security. Yang
et al. [42] also applied topic modeling to security related
discussions in Stack Overflow. They also found similar top-ics
from five categories: 1) web security, 2) mobile security,
3) cryptography, 4) software security, and 5) system security.
Zhang et al. [27] investigated the quality of Stack Overflow
code snippets by examining the misuse of API calls. They
reported that approximately 31% of their analysed code
snippets possibly incorporate API misuses that could lead to
failures, such as, crash, resource leakages, etc.

Fischer et al. [8] extracted Android security-related code
snippets from Stack Overflow, and manually labeled a sub-
set of the data as “secure” or “insecure”. The labeled data
allowed them to train a classifier to efficiently judge whether
a code snippet is secure or not. Next, they searched for
code clones of the studied snippets in 1.3 million Android
applications. They report that 15.4% of the Android applica-
tions contained Stack Overflow source code. Of the
analyzed source code, 97.9% contained at least one
insecure code block. Thus, their work does not overlap with
our study, Moreover, they studied Java-based systems
while we focus on C++ systems.

These previous studies did not investigate C++ code
snippets. Yet, C++ is the fourth most popular programming
language. The use of insecure code snippets has been
linked to multiple software attacks in which user credentials,
credit card numbers, and other private information were
stolen [43]. C++ is reported to be prone to misuses (e.g.,

3

memory corruption bugs) that easily lead to vulnerable code
and exploitable applications [44], [45], [46]. In addition, our
research advances the state of the art as follows: 1) To the
best of our knowledge, our work is the first to investi-gate
C++ vulnerability migration from Stack Overflow to GitHub.
2) The majority of studies that investigated vulner-abilities in
Stack Overflow studied a limited time period, while we
analyze vulnerabilities evolution over a period of ten years.

2.4 Security issues in GitHub

Rahman et al. [47] detected seven types of security smells
that are indicative of security weaknesses in IaC scripts and
identified 21,201 occurrences of security smells that include
1326 occurrences of hard-coded passwords. Zahedi et al.
[48] examined issue topics in GitHub repositories and found
that only 3% of them were related to security. The majority of
these security issues were cryptography issues. Pletea et al.
[49] examined security-related discussions on GitHub, and
report that they represent approximately 10% of all discussions
on GitHub. They also report that security related discussions
are often associated with negative emotions. Acar et al. [50]
conducted an experiment with active GitHub users to examine
the validity of convenience sampling during the recruitment of
participants in security-related studies. They observed that
neither the self-reported status of participants (i.e., as student
or professional developers) nor the security background of the
participants correlated with their capacity to complete security
tasks successfully.

2.5 Developer Studies in Secure Software Engineering

Qualitative methods have been used in software engineer-ing
to study development, maintenance, and evolution prac-tices in
real world settings. Qualitative data is often used in
complement to quantitative data to increase confidence in the
results of empirical studies through triangulation. An et al. [13]
who investigated license violations in code reused from Stack
Overflow conducted a survey of the developers of apps in
which the violations were found. They contacted 23 developers
and received six answers. All the six developers who replied
confirmed the reported license violation issues. Acar et al. [7]
surveyed 295 developers and conducted a user study with 54
students and professional Android developers. They found that
most developers used search engines and SO to address
security issues. Uddin et al. [51] surveyed software developers
to understand why they seek opinions about software libraries
in Stack Over-flow. They found that developers seek opinions
to learn about diverse software aspects, including security.
Uddin et al. [51] found that developers consider code examples
with reviews (positive/negative sentiment) together to de-
termine the quality of the provided code examples, and to them
such shared knowledge is important due mainly to the
shortcomings in official software documentation. In fact,
previous surveys of developers in Industrial contexts (e.g., at
IBM [25], Microsoft [52]) confirmed that developers find

4
TABLE 2: Comparison between our study and prior studies

Theme Our Study Prior Study Comparison

Reusability of In this study we investigated the Reusability in Stack Overflow contain copying This paper examines the reusability

C++ Posts in reusability of C++ code snippets code in other open sources application, license of C++ code snippets from Stack

Stack Overflow from Stack Overflow answer posts to violation in Stack Overflow and use in open source Overflow to GitHub projects. No

 GitHub projects. projects such as GitHub repositories [8] , [29], [34], previous work in the literature have

 [35]. The studies [10], [11], [12], [13] examined done a similar study. We study the

 reusability in Java and Android application, [1], prevalence of vulnerable C++ code

 [53] in Python, [37], in third party code, [54] in snippets in Stack Overflow and their

 IDE, [55] in API documentation, [56] in Php. migration to GitHub projects.

Security of C++ Software security issues are broad

Studies on Java Script [8], [39] and Android appli-

We carefully scrutinized each stud-

Posts in Stack and, at the same time, extremely cation [7], [40], [57] in Java and in Python [32] have ied code snippet for security vul-

Overflow difficult to detect; specially for C++ shown the existence of security vulnerabilities in nerabilities and expressed each vul-

 programming language. We analyze Stack Overflow code snippets reused in applica- nerability with a CWE vulnerability

 C++ code snippets in Stack Over- tions. label. No previous work has con-

 flow answer posts. ducted such manual analysis and

 classification.

Security

This study examined all GitHub

Previous studies on security in GitHub projects

No prior study specifically focused

in GitHub projects that reused vulnerable C++ examined the following themes: secure coding, on vulnerable C++ code snippets

Repositories code from Stack Overflow over a sentiment analysis, security issues [47], [48], [49], that migrated from Stack Overflow

 period of ten years. [50]. to GitHub projects.

the official software documentation to be often incomplete,
ambiguous and incorrect. These studies thus show that the
shared code examples in Stack Overflow can be useful and
important for developers while completing their develop-
ment tasks. Therefore, the presence of bugs and security
vulnerabilities in the shared code examples can introduce
critical failure into their codebase.

in details. Detected C++ vulnerable Stack Overflow code
snippets might have migrated to GitHub and ended up de-
ployed in the field. This research question aims to examine
the extent of this phenomenon.

Our findings in the paper show that the shared C++ code
examples do contain critical security vulnerabilities. More
worryingly, we observed that those vulnerable code snip-
pets were reused in thousands of GitHub repositories. To
inform the GitHub developers of those vulnerabilities, we
conducted a small survey following principles and designs
similar to the above research. Our proposed security fixes
were accepted by some of those repositories.

3 RESEARCH QUESTIONS AND DATA COLLECTION

This section presents our research questions and describes
our data collection and processing approach.

3.1 Research Questions

We explore the following Research Questions (RQs):

RQ1: How prevalent are C++ vulnerabilities in Stack
Overflow code snippets?
Previous work on other programming languages revealed
the existence of vulnerable code in Stack Overflow [7] [58].
To understand the existence and distribution of insecure
C++ codes in Stack Overflow, we analyzed C++ answer
posts throughout the ten years of Stack Overflow history.

RQ2: How are the vulnerable C++ code examples shared
on Stack Overflow reused in GitHub repositories?
Knowledge sharing through code reuse routinely occurs be-
tween Stack Overflow and GitHub. The effect of vulnerable
code migration to GitHub projects has not been investigated

3.2 Data collection

In this section, we describe the data collection and analy-sis
approaches that we used to answer our two research
questions. Figure 1 shows a general overview of our data
processing approach.

To study Stack Overflow posts evolution and their rela-tion
with GitHub, SOTorrent data set version 2018-09-23 was used.
In SOTorrent, each Stack Overflow post (question or answer)
is identified by a Stack Overflow ID. All modifi-cations to the
posts during the past ten years (2008-2018) are stored in the
data set. Figure 2 shows the connections between Stack
Overflow posts and their histories in the SOTorrent data set.
Each post in the SOTorrent dataset may contain a url to a
GitHub repository, if the url of the post is found in the GitHub
repository. However, if a post is referenced in a GitHub
repository, it is not clear which history record of the post in
SOTorrent the GitHub reference belongs to. The SOTorrent
data set that we used provides access to the version history of
Stack Overflow content for ten years. In total, there are
41,472,536 posts in 2018. These question and answer posts
were edited multiple times by Stack Overflow users. This
resulted in 109,385,095 post versions. A Stack Overflow post
may contain one or more code snippets that are tagged by
markups. That means the textual and code contents in a post
are separated based on markups (e.g., similar to < code ><
=code > tag in Stack Overflow). For more detailed description
on how SOTorrent is built please refer to [15]. In total
206,560,269 code and text blocks are identified in SOTorrent.
Only 6,039,434 posts have identified links to software projects,
where 3,861,573 had links to public GitHub repositories.

5

Fig. 1: Overview of our data processing approach.

Fig. 2: Connection of SOTorrent table to other resources
(simplified) [16]

3.3 Data Preprocessing

In our SOTorrent dataset, there were 583,415 questions
tagged as C++ (out of 16,389,567 questions). These questions
have 1,074,990 answers. Some answers were edited by users
one or more times. The total number of answers is 1,738,346 if
we also include the modified versions of answers.

Since our study aimed to analyze code snippets that
migrated to GitHub, we removed answers that did not
contain a code snippet. Not all the code blocks in a post
may contain a valid code snippet. For example, some posts
simply contain code markups, but we only found textual
content inside those code markups. The total number of
answer posts with one or more code blocks in our data set
is 1,032,696.

For each answer in Stack Overflow with a C++ code
snippet we take its url from Stack Overflow. We then check
the url in the SOTorrent dataset, by consulting the table
PostReferenceGH of SOTorrent data. The table tells us the
list of GitHub source code files where the answer url is
found, i.e., the code snippet may have been migrated to the
GitHub source file. Overall, the 1,770 answers in Stack
Overflow were found a total of 14,779 times in GitHub, i.e.,
they were referred to the various GitHub source code files a
total of 14,779 times.

Since a vulnerability could exist in the code snippet of
any version of an answer (i.e., including modified answers),
and a developer could have reused that vulnerable code
snippet into a GitHub file, we had to analyze all the code

snippets extracted from all the versions of all the answers.
In total, we identified 121,892 code snippets that could have
migrated from Stack Overflow to a GitHub project.

3.4 Data cleaning

Not all code snippets in SOTorrent were actually C++
codes. Figure 3 shows a tagged code snippet that is
supposed to be in C++, but which is actually a list of regular
expressions for build files. Other examples of pseudo codes
or plain texts tagged as code snippets could be found.
Therefore, we needed a tool capable of identifying code
snippets written in C++.

Fig. 3: Example of code snippet with no real c++ code, but
only configuration of ‘makefile‘ (Answer 13109884)

Syntaxnet is a natural language parsing tool developed by

Google research. Algorithmia has trained the Syntaxnet tool on
a large number of programming language code blocks [59],
such as C++, Java, etc. In this paper, we used this version of
Syntaxnet trained by Algorithmia, to detect valid C++ code
snippets. The Syntaxnet model takes as input a code snippet
and outputs a confidence score (between 0 and 100) for a set
of programming languages. For example, for a given code
snippet in our dataset, the model can provide the following
output: [(C++,95.5%), (Java, 32.3%), (PHP, 12.3%), (Perl,
2.8%)]. This means that the model has 95.5% confidence that
the input code snippet is using C++ programming language,
32.3% confidence that the code snippet is written in Java. We
assign a code snippet as a valid C++ code snippet, if the
Syntaxnet model has the highest confidence score for C++ for
the given code snippet (out of all the considered programming
languages). At the end, among 121,892 possible code snippets
extracted from Stack Overflow answers, only 72,483 code
snippets were reported

to be C++ code snippets by Syntaxnet. They came from
1,325 answers.

In SOTorrent, each change in a question or answer in
Stack Overflow is stored as a set of records, but links to
GitHub projects are provided only for the ID of answers or
questions without direct indication of which version actually
migrated. However, to investigate the migration of
vulnerable code snippets to GitHub, we had to precisely
identify the version of the post that migrated. Following
previous research that focused on code examples shared
only in answers while producing API documentation [19], in
this study, we limited our analysis to answers with links to
GitHub projects, because those code examples are more
likely to offer solution to coding tasks.

6

of the 72,483 code snippets to GitHub, we extracted all the
GitHub links contained in all the answers from which the
72,483 code snippets originated. The 2056 code snippets
are extracted from 1,325 answers. An answer can be edited
mul-tiple times, some time creating a slightly different
version of a code snippet. We considered each such
version as a distinct code snippet. This is why we have on
average 1.55 code snippets per answer. In Figure 4, we
show the popularity of the 1,325 posts based on two
commonly used popularity metrics in the literature: number
of scores (upvote - down-vote) and number of view counts.
On average the answers have scores more than 82 and
view counts more than 95K. Therefore, the answers and the
shared code examples are very popular in Stack Overflow.

4 PREVALENCE OF C++ VULNERABILITIES IN STACK
OVERFLOW CODE EXAMPLES (RQ1)

4.1 Approach

Fig. 4: Popularity of views and scores (Log 10 scale) of
1,325 answers of 2,056 code snippets groups

The SOTorrent data set that we used stores all the answers
and questions of Stack Overflow with their history for ten years.
Posts are broken into text and code and stored sepa-rately.
Any change to the post within the period results in a replication
of all the details of the answer or question in the corresponding
tables that store the details of the post. Codes are stored as
code blocks and as stated, any modification to the text of the
answer or question results in storing replications of codes in
code blocks. Therefore, another im-portant study design
decision that we made concerns code duplication. We
observed multiple cases of code duplication in our initial list of
72,483 code snippets extracted from Stack Overflow answers.
We therefore applied SourcererCC
[60] on the code snippets to group similar code snippets. We
use Type-1 matches in SourcererCC to get exact clones. The
input to SourcererCC was the list of all 72,483 code snippets.
The output was a list of 2,056 clone groups. Each of the
72,483 code snippets is included in one of the 2,056 clone
groups. Thus, our analysis of code snippets from the 2,056
clone groups is representative of the entire dataset (i.e., the
72,483 code snippets). The analysis of any of the code
snippets from a group will give us the same information.
Therefore, we randomly picked one code snippet from each
group for our manual review analysis in Section 4.1.

To ensure that we did not miss any migration of each

Fig. 5: Flowchart of code reviewing in first step

In order to make the review process more efficient and
systematic we created a web application having a simple
interface with language-specific syntax highlighting. The
web-based review application could mark code snippets as
vulnerable, assign one or more CWE tags for each code
snippet and view all similar code of a same answer at once.
The review process had two stages of manual inspection.

Three of the main reviewers are from the Software Engi-
neering research group at Shiraz University and contributed
as authors (first, third and sixth authors). The first and third
author had mastered Software Security in C++ by taking a
graduate course on the subject under a professor of the
area (second author). The sixth author was working as a
professional penetration tester and mastered the official
documentations on the subject. The other participants were
volunteers of the same research group and contributed
without any financial incentives. The collaborative nature of
the large resource group enables the students to contribute

to the research outcome of each other, which also serves
as a learning experience for each student. As such, no
direct incentive was involved. In the first round of reviews,
the three experienced master students in C++ security
reviewed 2,056 unique code snippets as noted before.

All code reviewers in this study passed the secure coding
practical graduate course with C++ CERT [61] book as a
reference over a period of one semester. They have all
completed two practical and theoretical exams as a partial
completion of their assessment in the graduate course of
Software Security at Shiraz University.

At the first step of the manual inspection process, the
goal was to reduce the size of the data-set without losing
accuracy. Thus, all code snippets that were certainly not
vulnerable were removed. Code snippets that were very
short or did not have a specific functionality were removed.
If a vulnerability within a code snippet was noticed within
the first round of review, they would write a short descrip-
tion explaining why they thought the code snippet might be
vulnerable and would add an appropriate CWE for the code
snippet. During the review process, reviewers were directly
in contact with each other and solved their disagreements
through discussions. Figure 5 depicts the workflow and how
our three reviewers inspected the code snippets and
flagged them as vulnerable or not. After this first stage of
thorough code review, 498 possible vulnerable code
snippets were detected.

A second round of review was conducted using a set of
guidelines established for the task. In order to find
vulnerabilities in the studied code snippets, the reviewers
needed to gain a good understanding of the code snippets
and their evolution. Based on knowledge obtained from the
first round of review and reading the main Software Security
references [61], we established the following set of
guidelines, with the aim to find as many vulnerabilities in the
code snippets as possible.

1) Read the question corresponding to the answer

con-taining the probable vulnerable code snippet:
To have a better understanding of the reasons why
developers shared the code snippet on Stack Overflow.

2) Read the last version of the answer, its description,
and analyze the evolution of the code over time: To
determine whether the vulnerability has been fixed or
evolved within the various versions.

3) Read the comments of the answers: To determine if
the vulnerability has been reported through the
comments of the post. As an example, in Figure 6, 1st
and 2nd comments indicated a vulnerability, and 3rd
and 4th comments indicated a deprecated answer.

4) Look for deprecated or dangerous functions in
code snippet: For example, the ‘rand()‘ function is
obso-leted since C++11 [62] and it is not
recommended for random-number generation and
cryptographic opera-tions.

5) Check the arguments passed to the functions in the
code snippet: Types of arguments and their values are
very important. For example, an out-of-bound large un-

7

Fig. 6: Comments to vulnerable code in Answer (ID 440240)

signed integer passed to a function that accepts signed
integers may interpret the value as a negative number
which would result in an undefined behaviour or a
program crash.

6) Check function usages based on official documen-
tations: For referencing and proper documentation of
found vulnerabilities, official documentations were ex-
tensively used throughout the review process. For ex-
ample, the ‘malloc’ function in C++ is used to allocate
memory. Therefore, the documentation recommends to
check its return value upon initialization to avoid
problems, such as ‘null dereferencing’, which then cre-
ate critical security vulnerabilities. Indeed, we found
shared code snippets where the return value of malloc
was not checked (e.g., see listing 2 in Section 4.2).

7) Look for logical vulnerabilities in the code snippets
Usually, security is not the first priority of answerers in
Stack Overflow. Answerers focus more on functionality
than security. Therefore, the shared code snippet may
miss obvious flaws that can introduce a critical vulner-
ability. For example, a shared code snippet may show
how to read a vector in C++ without showing how to
initialize it properly. Without proper bounds checking,
this shared code snippet will introduce an index out of
bounds problem in the reused code snippet. Indeed,
we found such vulnerable code snippets in Stack
Overflow. For example, see listing 5 in Section 4.2,
where the goal is to read a vector, but no bounds
checking is performed. Using a larger value than index
bound can happen either by a programming mistake or
could be the doing of an attacker.

After the second round of review, the identified vulnera-

ble code snippets were confirmed and tagged based on
CWE tags. One or multiple CWE tag(s) were assigned to
each code snippet. These tags allowed us to track the
evolution of the security of the code snippets throughout the
evolution of Stack Overflow. We computed the Fleiss’
Kappa [63] agreement among the three reviewers before
discussions and obtained 0.26, which is a ’fair’ agreement.
Because the level of agreement between participants was
only ’fair’, the second author who is professor in software
security organised a group discussion with 12 graduate
students who participated in the manual evaluation to
discuss each case and finalize the results of the first round
of review, using majority votes. The output of the manual
analysis is a list of vulnerable C++ code snippets found in
Stack Overflow posts, with each vulnerability tracked to a
CWE ID. The process took 868 hours.

8
TABLE 3: The different types of CWE C++ vulnerabilities and their frequency as we observed in our dataset of Stack
Overflow Answers. Each tick in X-axis denotes the last one/two letters of a year, e.g., 8 for 2008 to 16 for 2016.

CWE Title and Description Frequency by Year

 Bad Coding Practices 6

1006 These weaknesses are deemed to cause exploitation’s that are not vulnerable by self but indicate that the 1

8 9 10 11 12 13 14 15

 application is not developed carefully.

 Improper Check for Unusual or Exceptional Conditions 5

754 This vulnerability occurs based on the assumption that events or specific circumstances never happen, such as 1

 low memory conditions, lack of access to resources. 8 9 10 11 12 13 14 15

Improper input validation: 5

20 When software does not validate input properly, an attacker is able to craft the input in a form that is not 1

 expected by the rest of the application. 8 9 10 11 12 13 14

252 Unchecked return value 4

The return value is not checked by a method or function, which may create an unexpected state.
1

 8 9 10 11 12 13 14 15

 Validate input Weaknesses 6

1019 Weaknesses are r elated to the design and architecture of a system’s i nput vali dation com ponents that could l ead 1

 to a degradation of the quality of data flow in a system. 8 9 10 11 12 13 14

Use of obsolete function 2

477 The code uses deprecated or obsolete functions, which suggests that the code has not been actively reviewed or 1

8 9 10 11 12 13

 maintained.

 Uncontrolled memory allocation 1

789 Memory is allocated based on invalid size and allowing arbitrary amounts of memory to be allocated.
2

8 9 10 11 12 13

Improper neutralization of null byte or null character 2

158 The input is received from a upstream component, but it does not neutralize or incorrectly neutralizes when 1

8

11 12

15

 null bytes are sent to a downstream component.

Use of externally controlled format string 2

134 Have been used a function that accepts a format string as an argument, but the format string originates from an 1

9 11

 external source.

Null pointer deference 2

476 A NULL pointer dereference occurs when dereference a pointer that it expects to be valid, but is NULL, typically 1

9 11

 causing a crash or exit.

Stack base buffer overflow
1

121 The situation is where the buffer is rewritten in the stack (like, a local variable or, rarely, a parameter to a

8 9

 function).

Double free
1

415 Called free() twice on the same memory address, potentially leading to modification of unexpected memory

8 9

 locations.

676 Use of potentially dangerous function 1

Invoked a potentially dangerous function that could introduce a vulnerability if it is used incorrectly. 8

12

Function call with incorrect specific arguments

1

628 The product calls a function, procedure, or routine with arguments that are not correctly specified, leading to

8 9

 always-incorrect behavior and resultant weaknesses.

Function call with incorrect argument type
1

686 A function, procedure, or procedure is called up with arguments that are not properly specified, resulting in

10

15

 always mistaken behavior and resulting weaknesses.

835 loop with unreachable exit condition 2

The program contains an iteration or loop with an exit condition that cannot be reached, i.e., an infinite loop. 8

Divide by zero

1

369 Typically occurs when an unexpected value is provided to the product, or an error occurs that is not properly

8 9

 detected.

 Improper encoding or escaping of output 2

116 A structured message is prepared to communicate with another component, but encoding or escaping of the

 data is either missing or done incorrectly. 10

Improper handling of undefined values
1

232 Does not handled or incorrectly handled when a value is not defined or supported for the associated parameter,

8

 field, or argument name.

Reliance on Undefined unspecific or implementation defined behavior˜
1

758 Used an API function, data structure, in a way that relies on properties that are not always guaranteed to hold

10 11

 for that entity.

Classic buffer overflow
1

120 Been copied an input buffer to an output buffer without verifying that the size of the input buffer is less than

9

 the size of the output buffer.

Incorrect calculation
1

682 Perform a calculation that generates incorrect or unintended results that are later used in security-critical

8

 decisions or resource management.

Integer overflow or wraparound
1

190 Perform a calculation that can produce an integer overflow or wraparound, when the calculation is used for

11

 resource management or execution control.

Improper resource locking
1

413 The software does not lock or does not correctly lock a resource when the software must have exclusive access

8

 to the resource.

9
Continuation of Table 3: The different types of CWE C++ vulnerabilities and their frequency as we observed in our dataset
of Stack Overflow Answers. Each tick in X-axis denotes the last one/two letters of a year, e.g., 8 for 2008 to 16 for 2016.

CWE Title and Description Frequency by Year

710 Improper adherence to coding standards 1

Not followed certain coding rules for development, which can lead to resultant weaknesses. 11

Improper neutralization of escape, meta, or control sequence 1

150 The software receives input from an upstream component, but it does not neutralize or incorrectly neutralizes 11

 special elements when they are sent to a downstream component.

OS command injection:

1

78 Constructs all or part of an OS command using externally-influenced input from an upstream component, that

12

 could modify the intended OS command when it is sent to a downstream component.

Untrusted search path
1

426 The application searches for critical resources using an externally-supplied search path that can point to resources

10

 that are not under the application’s direct control.

Off by one error
1

193 A product calculates or uses an incorrect maximum or minimum value that is 1 more, or 1 less, than the correct

8

 value.

131 Incorrect calculation of buffer size 1

Does not correctly calculate the size to be used when allocating a buffer, which could lead to a buffer overflow. 13

125 Out-of-bounds Read 1

The software reads data past the end, or before the beginning, of the intended buffer. 16

4.2 Results

In Table 3, we summarize the list of CWE vulnerabilities that
were found in the code snippets during our manual analysis.
The first column (‘CWE’) in Table 3 provides the ID of the
vulnerability from the CWE database. The second column
(‘Title and Description’) presents a brief description of the
vulnerability. Please see [64] for a complete descrip-tion of
each CWE vulnerability. A total of 31 different CWE
vulnerabilities were found in 99 vulnerable code snippets. We
present those vulnerabilities in Table 3 based on their
occurrence frequency in the 99 code snippets, i.e., the most
frequent vulnerability is placed at the top. The vulnerability
most frequently observed in our manual analysis was ‘Bad
Coding Practices’ (CWE ID 1006), followed by ‘Improper check
for unusual or exceptional conditions’ (CWE ID 754), and
‘Improper code validation’ (CWE ID 20). Indeed, im-proper or
insufficient checks of inputs could create many critical C++
vulnerabilities. For example, the ‘Improper code validation’
vulnerability occurs when, for example, a buffer in C++ is not
checked for size before providing input. This lack of checking
then can create critical security attacks, such as Buffer
Overflow, which is frequently exploited by hackers to gain
unauthorized access to a system or to create Denial of Service
(DoS) attack against a system. The last column (‘Frequency by
Year’) in Table 3 shows the distribution of the CWE
vulnerability in our manually ana-lyzed code snippets. We
show the distribution by year. For example, the vulnerability
‘Improper input validation’ was frequently observed in all the
years between 2008 and 2014. The SOTorrent dataset was
created from Stack Overflow. Stack Overflow was created in
2008. Some vulnerabilities were not observed in older code
snippets, but are found in the newer code snippets. For
example, the ‘Out-of-bounds Read’ vulnerability (CWE ID 125)
only started to show in the shared code snippets around 2016.
In Stack Overflow, older posts can be as popular as a new one
and thus older code examples can still be reused. This is
especially true for C/C++-based systems, where legacy APIs
are widely used

in mission critical systems. Overall, the diverse distributions
of the vulnerabilities across the years shows the challenge
developers can face while trying to reuse those code snip-
pets, especially when they are not security experts.

In the following, we present some examples of vulnera-
bilities found in the inspected code snippets.

Listing 1: Generate random string in C++ - Answer id 440240 in Stack Overflow,
shows vulnerability due to use rand function with incorrect using method, (CWE-
1006, CWE-477, CWE-193, CWE-754)

void alphanum [gen random (char *s, const int len)] f
static const char alphanum[] =

”0123456789”
”ABCDEFGHIJKLMNOPQRSTUVWXYZ”
”abcdefghijklmnopqrstuvwxyz”;
for (int i = 0; i < len; ++i) f

s[i] = alphanum[rand()% (sizeof(alphanum))];
g
s[len] = 0;

g

The code snippet of answer 440240 shown in Listing 1
can be dangerous. Functions with count parameters like
‘len‘ should take into account the terminating ‘NULL‘ as an
extra character. But this function actually writes into the
character ‘len+1‘ when executing s[len] = 0. That is CWE-
193: Off-by-one-error vulnerability [65]. A vulnerability that
may lead to unpredictable behaviour, memory corruption
and application crash. The function only works if less than
permitted length is used. For example, Line ‘s[i] =
alphanum[rand() % (sizeof(alphanum)]‘ is faulty since size
of ‘alphanum‘ is ‘63‘, where the last character in the string

indexed 62nd is ‘NULL‘. Therefore, once in a while a NULL
may be included in the generated ’random’ string. This
vulnerability can be categorized as ’CWE-754: Improper
check for unusual or exceptional conditions’ [66], where an
improper number may be used as a return of a function
leading to a crash or other unintended behaviours. Another
appropriate category is ’CWE-1006: Bad coding practices’.
Stated differently, a generated random string with this
algorithm may include ‘NULL‘ in the middle of string.

Moreover, ‘rand()‘ is an obsolete function in C and C++. So
another vulnerability category is ’CWE-477: Use of obsolete
function’ a major degradation in software quality. Another
vulnerability exists within the code since the developer did
not use a random seed before calling the function. Thus,
the generated random number is not ’random’ at all.
Moreover, ‘rand() % mod‘ is not a good practice since it
returns lower bits which are again not random [67].

Listing 2: Execute functor in given thread in QT - Answer id 21653558 in Stack
Overflow, shows vulnerability due to use malloc function without checking return
special condition, (CWE-1006, CWE-252, CWE-789, CWE-476)
class FunctorCallEvent: public QMetaCallEvent f
public:

template <typename Functor>
FunctorCallEvent(Functor && fun, QObject * receiver) :

QMetaCallEvent(new QtPrivate::QFunctorSlotObject<Functor,
0, typename QtPrivate::List Left<void, 0>::Value, void>

(std :: forward<Functor>(fun)), receiver, 0,

0,0,(void**) malloc (sizeof(void*)));

Another vulnerability is shown in Listing 2 of answer
21653558. The code snippet in this answer uses ‘malloc‘ to
allocate memory and passes its pointer to a function in QT
library that requires a valid pointer. The malloc return
pointer may be set to NULL in case of malloc failure. Thus,
the return pointer from malloc must be checked even if the
amount of memory requested is small [68]. In this example,
the return value of malloc is not checked. This vulnerability
is called CWE-252 [69]; Unchecked return value. In case of
malloc failure, null pointer dereference occurs.

Listing 3: Execute command and get output - Answer id 478960 in Stack
Overflow, Execute function in given thread in QT due to OS command injection
because user input are involved, (CWE-78, CWE-1019)

std :: string exec(const char* cmd) f
std :: shared ptr<FILE> pipe(popen (cmd , ”r”), pclose);
if (! pipe) return ”ERROR”;
char buffer[128];
std :: string result = ””;
while (! feof (pipe.get ())) f

if (fgets (buffer , 128, pipe.get ()) != NULL)
result += buffer;

g
return result ;

g

The function shown in Listing 3 is vulnerable to code
injection (OS command injection) attacks since user inputs
commands are inputted and not checked. In other words,
any command with privilege level of the program can be
executed without any errors or warnings.

Listing 4: Set the global LUA PATH variable programmatically - Answer id
4156038 in Stack Overflow, shows vulnerability due to second arg in this function
may contain multiple path separated by ”;” (CWE-754, CWE-252, CWE-426)
int setLuaPath(lua State* L, const char* path)f

lua getglobal(L, ”package”);
lua getfield (L, 1, ”path”);

std :: string cur path = lua tostring)(L, 1);

cur path.append(’;’) ;
cur path.append(path);
lua pop(L, 1) ;

lua pushstring(L, cur path.c str ()) ;

lua setfield (L, 2, ”path”);
lua pop(L, 1) ;

10

return 0;

g

Listing 4 deals with system path programmatically, or
different paths the program searches. The operation is
dangerous and should be performed carefully. For example,
‘path‘ in this function may contain multiple paths separated
by ‘;‘. For instance, ‘/usr/share/lua;/foo/bar/evil/path‘. Having
an untrusted search path within the paths produces the
probability of arbitrary code execution with privilege of the
program and redirection to a wrong file potentially triggering
a crash. The vulnerability is called CWE-426: Untrusted
search path. For more on this vulnerability, please refer to
[70]. The search may lead to execution of programs, which
in turn may lead to unusual or exceptional conditions; i.e.,
CWE-754: Improper check for unusual or exceptional
conditions. Moreover, all the return values of the functions
in the code snippet are not checked. Thus, the snippet also
has CWE-252: Unchecked return values.

Listing 5: Set Byte vector to integer type - Answer id 41031865 in Stack
Overflow, shows vulnerability due to out of bound read and the lack of checking
the size of the variable, (CWE-20, CWE-125, CWE-1019)
template<typename T>
static T get from vector(const std::vector<uint8 t>& vec,

const size t current index))f
T result;
uint8 t *ptr = (uint8 t *) &result;
size t idx = current index + sizeof(T);
while(idx > current index)

*ptr++ = vec[idx];
return result ;

g

In Answer 41031865 shown in Listing 5, ‘current index +
sizeof(T)‘ can become larger than size of ‘vec‘ due to CWE-
1019: Validate inputs vulnerability. In addition, when index
exceeds the limit, information leakage can occur or CWE-
125; the vulnerability ’Out of bound read’ is present.
Listing 6: Checks if string ends with .txt - Part of answer id 20447331 in Stack
Overflow, all defined functions have vulnerability have fail if input string that
contain a null value, (CWE-158, CWE-1019)

bool ends with (std :: string const &a, std :: string const &b) f

auto len = b.length() ;
auto pos = a.length() len;
if (pos < 0)

return false ;
auto pos a = &a[pos];

auto pos b = &b[0];

while (*pos a)
if (*pos a++ != *pos b++)
return false ;

return true;
g

bool ends with string (std :: string const& str, std :: string const&

what) f
return what.size() <= str.size ()

&& str.find(what, str . size () what.size()) != str . npos;
g

In answer (20447331) shown in Listing 6 on how to
validate whether a file name ends with ”.txt” or not, this
answer includes code of functions and their benchmarks

CWE-1006

20

CWE-754

19

CWE-20

17

 CWE-252 15

 CWE-1019 15

CWE-477

9

CWE-789

8

 CWE-158 5

CWE-134

3

CWE-476

3

CWE-121

2

CWE-415

2

CWE-676

2

CWE-628

2

C
W

E
 CWE-686

2

CWE-835 2

CWE-369

2

CWE-116

2

CWE-232

1

CWE-758

1

CWE-120

1

CWE-682

1

CWE-190

1

CWE-413

1

CWE-710

1

CWE-150

1

CWE-78

1

CWE-426

1

CWE-193

1

CWE-131

1

 CWE-125 1

 0 5 10 15 20

 #Frequency

Fig. 7: Frequency of CWEs in code snippets

Fig. 8: Distribution of answers in C++ by year

for six methods in the original code snippet in answer post.
The vulnerability for other functions defined in the code
snippet is exactly the same as the two vulnerable functions.
However if filename in function includes a NULL character,
all of above methods will fail. This is a common trick to
bypass web application firewalls and file upload
applications. For example, Validating ‘shell.txtn0.php‘ will
return True for all of above functions.

From our manual reviews of the code snippets, we found
99 vulnerable code snippets residing in 69 answers. The
frequency of CWE’s in code snippets is presented in Figure
7. CWE-1006 (Bad coding practices) and CWE-754 (im-
proper check for unusual or exceptional conditions) are the
most frequent ones, followed by CWE-20 (improper input
validation). Two of the top three vulnerabilities are related to
the improper or lack of checking of inputs and conditions,
i.e., developers who shared the code were either not aware
of those potential vulnerabilities or they are not careful
enough. Given that those shared code snippets are found in
popular questions and answers in Stack Overflow, they
were nevertheless reused by other developers.
The distribution of all C++ answers from 2008 to 2018 is
shown in Figure 8. If one hypothesizes that Stack Overflow

11

usage reflects the popularity of the programming language,
C++ has been the most popular programming language in
2013, and its usage declined after that. By looking at the
distribution of answers, we find that most answers were
created in 2013 (as shown in Figure 8). The distribution of
Stack Overflow answers linked to GitHub projects by year
again shows that in 2013, C++ had the most migrations to
GitHub projects (see Figure 8).

5 PROPAGATION OF C++ VULNERABLE CODE FROM

STACK OVERFLOW TO GITHUB (RQ2)

5.1 How frequently are the vulnerable code examples
from Stack Overflow copied to GitHub? (RQ2.1)

To detect the vulnerable code snippets that migrated to GitHub
projects, it may seem plausible to use clone detec-tion tools
like SourcererCC [60]. However, the most effective clone
detection tools work only for Java applications, e.g., Oreo [71].
The ones that can detect C++ clones only work at file or class
level. For Java, SourcererCC can find cloned procedures but
the same capability is not implemented for C++. The majority
of vulnerable code segments that we found are functions or a
part of a function. Therefore, we had to use some heuristics to
search and find similar codes in linked GitHub projects. To find
vulnerable clones, we searched for the signatures of the code
snippets in Stack Overflow by looking at the sequences of
keywords that can uniquely characterize them within GitHub
projects. To derive our heuristics, we took inspiration from
previous work [72], [73] and opted for a rule-base approach.
We chose rules because unlike keyword-based searching,
rules are less susceptible to false positive [72], [73]. For each
code snippet, we selected an ordered sequence of sub-strings
that can be used to determine the presence of the code
snippet in the linked GitHub projects.

For example, to detect vulnerable GitHub projects that
used ’rand()%(sizeof(alphanum))]’ like Listing 1, we search
for ’RAND()’ sub-string and for versions that had ’rand()%(
sizeof(alphanum)-1)]’ we look for two consecutive sub-
strings of ’RAND()’ and ’)-1)’.

The total count of GitHub files for the 69 vulnerable answers
was 2,859 GitHub links. We present them in Table 5 along with
the CWE definition. After executing our pro-posed tracing
approach, we found 287 GitHub files that may contain the
security flaws imported from Stack Overflow. After a careful
manual review of the files, we found the tracing approach to be
78.72% accurate (see Table 4 below).

In the following, we compare the proposed approach with
a BASELINE approach in which we have changed the crite-
ria for choosing the keywords. In the BASELINE approach,
we chose the keywords randomly without changing the
number of words selected for each code snippet. In order to
select random keywords, we first removed the comments of
the code snippet and then tokenize the code snippet. We
removed reserved keywords from the code snippets

and only chose words with more than three characters as
candidate keywords.

Table 4 presents the results obtained when comparing
our proposed algorithm with the baseline method on 296
files. The columns ’Chosen-Keyword’ and ’Random-
Keyword’ report the number false positive, true negative,
false neg-ative, and true positive for respectively our
proposed ap-proach and the BASELINE approach.

For each algorithm and for each of the code snippets found
in the 69 answers in Stack Overflow, we executed the
algorithm as follows. Using the SOTorrent database, we first
collected the list of all GitHub files where a vulnerable code
snippet might have migrated. If the SOTorrent database
reported more than five such GitHub files, we randomly
selected five GitHub files and ran our algorithm to deter-mine
whether the vulnerable code snippet was reused in each of the
GitHub files. If the SOTreent database reported less than five
such GitHub files, we ran our algorithm on all those GitHub
files. For each such GitHub file, the algorithm returns a ’1’ if it
considers that the vulnerable code snippet is reused in the
GitHub file i.e., the file is vulnerable due to reuse of the code
snippet. It returns 0 otherwise i.e., the file is not vulnerable.
Based on this setup, we computed the four metrics. True
Positive = The algorithm considers a file vulnerable, the file is
actually vulnerable. False Positive
= The algorithm considers a file vulnerable, but the file is
not actually vulnerable. True Negative = The algorithm does
not consider a file vulnerable and the file is actually not
vulnerable. False Negative = The algorithm does not
consider a file vulnerable but the file is actually vulnerable.

TABLE 4: Comparison between our proposed approach
and the BASELINE approach

Chosen-Keyword Random-Keyword
False Positive 34 60
True Negative 10 160
False Negative 29 41
True Positive 223 35
Accuracy 78.72% 65.87%

For each method, we calculate Recall, Precision, F1-

Measure and Accuracy on all analyzed GitHub projects:

RECALL=
 T rueP ositive

T rueP ositive + F alseNegative

PRECISION=
 T rueP ositive

T rueP ositive + F alseP ositive

 P recision Recall

F1 Measure= 2 * P recision + Recall

ACCURACY=
T rueP ositive +T rueNegative

T rueP ositive + F alseP ositive + F alseP ositive + F alseNegative

As shown on Figure 9, our proposed approach signif-
icantly outperforms the BASELINE approach. The most
important weakness of the Random-Keyword is the use of
keywords that do not indicate the existence of security
vulnerabilities in GitHub code. Listing 7 presents the or-
dered sequence of sub-strings used to identify files having
the vulnerability of answer ID 4156038. The random set of

12

Fig. 9: Comparison between our proposed approach and
the BASELINE approach

keywords selected by the BASELINE approach could not
capture the vulnerable part of the code and its sequence,
and therefore failed to track the vulnerable code snippet.

Listing 7: Selected keywords from answer id: 4156038
!”Path”
! lua tostring(

More details about our tracing approach and its evaluation
is available in our online appendix [17] [18].

5.2 How frequently are the copied vulnerable code ex-
amples fixed in the GitHub repositories? (RQ2.2)

We created a new web application to make the review pro-
cess more efficient and systematic. With the review system,
we assessed whether the vulnerable Stack Overflow code
snippets that were migrated to GitHub were either fixed or
still contained the vulnerability.
Among the 287 GitHub files that we checked, vulnerabilities
were corrected in 34 files and the other 253 GitHub files still
had vulnerabilities at the time of writing of this paper. For
instance, as can be seen in Listing 8, the two CWE-789 [74]
and CWE-252 [69] were corrected.

Listing 8: Part of code was Fixed and improved in GitHub File for answer id
2654860 in Stack Overflow

//Improve and adapted version of http://stackoverflow.com/a/

2654860

void save bmp(string filename, uchar4* ptr, const int width, const int height)
f
const int num elems = width*height;
unsigned char* img = (unsgined char*)malloc(3* num elems); int i =0;
.....

g

As shown in listing 9, boundary was limited and men-
tioned in comments of source code in GitHub file and CWE-
125 [75], CWE-category-1019 [76] and CWE-20 [77] were
corrected.
Listing 9: Code was Fixed in GitHub File mentioned in comment for answer id
41031865 in Stack Overflow

//check if we can read sizeof(T) bytes starting the next index
check lenght(vec.size() , sizeof (T), current index + 1); T result ;

auto* ptr = reinterpret cast <uint8 t*>(&result);

TABLE 5: CWE’s Detection in GitHub Repositories with
chosen-keyword Algorithm

GitHub Confirm CWE Title
Count Count

1539 4 CWE-835-Loop with unreachable
 Exit condition

703 37 CWE-20-Improper input validation
653 72CWE-754-Improper check for un-usual or

exceptional condition
324 187 CWE-1006-Bad coding practice
250 5 CWE-158-Improper neutralization

 of null byte or null character
212 2 CWE-369-Divided by zero
151 141 CWE-150-Improper neutralization

 of escape, meta, or control sequence
118 0CWE-628-Function call with incor-rectly specific

argument
89 14 CWE-252-Unchecked return value
73 2 CWE-134-Use of externally con-
 trolled format string
54 4 CWE-476-Null pointer dereference
53 4 CWE-789-Uncontrolled memory al-
 location
41 12 CWE-477-Use of obsolete function
20 1 CWE-676-Use of potentially danger-
 ous function
20 0 CWE-232-Improper handling of un-
 defined values
14 2 CWE-121-Stack base buffer overflow
7 0 CWE-415-Double free
5 1 CWE-78-Improper neutralization of
 special elements used in an os com-
 mand
5 0 CWE-413-Improper resource locking
5 5CWE-116-Improper encoding or es-caping of

output
5 0 CWE-193-Off by one error
3 3 CWE-682-Incorrect calculation

3 0CWE-686-Function call with incor-rect
argument type

3 0CWE-120-Buffer copy without checking size of
input

3 0CWE-131-Incorrect calculation of buffer size
3 1CWE-710-Improper adherence to coding

standard
1 0 CWE-426-Untrusted search path

for (size t i = 0; i < sizeof(T); ++i)
f

*ptr++ = vec[current index + sizeof(T) i];
g
return result ;
g

6 DISCUSSIONS

In this section, we first describe a survey of GitHub devel-
opers who reused the C++ vulnerable code snippets in their
GitHub repositories (see Section 6.1). We then describe a
browser plug-in that we developed to warn such unsuspect-
ing users of potential vulnerabilities in C++ code snippets in
Stack Overflow (see Section 6.2).

13

6.1 Reaction from GitHub developers about the vulner-
able code examples

To inform developers about the vulnerabilities found in their
repositories, we developed a script to automatically report
issues to the projects repositories. The script was fed with
the results of our code review. We provided developers with
the following information:

Description: The vulnerability in the code snippet is
explicitly expressed.
Example: An attack scenario is provided to justify why
the vulnerability is dangerous and how it may lead to
exploitation.
Mitigation Scenario: The mitigation scenario is in-
cluded to inform the developer on how to fix the
vulnerability.
Reference: An authenticated reference is provided to
show that the vulnerability was labelled with a CWE ID
based on objective and factual judgements.

In addition, five questions related to the vulnerability were

asked to the developers who responded to our fixes.
Depending on the type of the question, we provided the
developers with a plain text box or a Likert scale, to answer
the question. Table 6 shows the survey questions and the
type of answers that we recorded for each question.

Fig. 10: GitHub developer opinion about the vulnerabilities

We received 15 responses from the 174 issues that were
sent. Figure 10 breaks down the 15 responses based on
respondents’ opinions about the reported vulnerabilities.
None of the respondents disputed the validity of the re-
ported vulnerabilities, i.e., our assessment of vulnerabilities
was reliable. However, only two out of the 15 respondents
acknowledged that they fixed the vulnerability after our
recommendation. Eight out of 15 opted to keep the original
code as is, arguing that the underlying code base (where
the vulnerable code snippet is reused) will not be exposed
online and that the vulnerability won’t therefore be ex-
ploitable. This is of course a dangerous assumption; given
how any system component can be reused. Some of the
respondents also personally thanked us for reporting the
issues. Figure 11 shows an example response.

When we asked the respondents whether automatic tool
supports to detect those vulnerabilities would be useful, 14 out
of the 15 respondents agreed (7 agree + 7 strongly agree)

14
TABLE 6: Questions asked in survey.

NO Question
1 Which of the following situation for our issue was true? (eight options)
2Please justify your choice above (text box)
3 What would be the best way to inform developers of potential vulnerabilities in code examples shared on Stack Overflow (5-

point Likert scale for each opinion)
4 Do you have any other suggestions to design automated techniques to assist developers to handle security vulnerabilities

while using code from online forums? Please write in a couple of sentences below (text box)
5 Could automated vulnerability analyses of code snippets in online forums be useful in your future development tasks? 5-point

Likert scale for each opinion

Fig. 11: User response about security vulnerability in code

that such a tool could help them (see Fig 12). When we
further asked the respondents about the specifics of such
automated tools (see Figure 13), 7 respondents asked for a
browser plug-in, 7 requested a tool that informs devel-opers
via automatically generated emails, 6 requested an offline
tool, and 2 asked to be notified about vulnerabilities through
an online repository of website. Therefore, the re-spondents
preferred to be notified instantly when possible, e.g.,
through a browser plug-in that can warn them of the
potential vulnerability in a code snippet during their visit in
Stack Overflow.

Fig. 12: User Opinion About Automated Vulnerability Anal-
ysis Being Useful for Future Development

6.2 A Browser Extension To Warn SO Users About C++
Vulnerability in Stack Overflow

Fig. 13: User Opinion About How To Inform Developers of
Potential Vulnerabilities in Code Examples

snippet is vulnerable (see Figure 14). The extension then rec-
ommends non-vulnerable similar code snippets from other
Stack Overflow posts, so that the developer can reuse those
safe code snippets instead of the vulnerable code snippet.

To inform users about the existence of vulnerabilities in a code
snippet posted on Stack Overflow, we have developed a
browser extension. In Figure 14, we show a screenshot of our
developed extension. The extension gets activated when a
developer visits a Stack Overflow post. The extension consults
our database of vulnerable C++ code snippets in Stack
Overflow to determine whether the provided solution in the
post is vulnerable. If the provided solution is indeed found
vulnerable, the extension then shows a warning mes-sage to
the developer with an explanation of why the code

Fig. 14: Browser Extension for Code Snippet with AnswerId
440240 in Stack Overflow

Suppose that a developer needs to create a random alpha-
numeric string in C++ for their task in their program. The
developer searches in Stack Overflow for a possible solution.
The search shows a question with ID 440133 as the top match.
The importance of the question is determined

in Stack Overflow based on how developers perceive the
question. The asker of this question offered a bounty reward of
100 to the accepted answer. Consequently, the question
received many answers. The accepted answer (ID 440240)
has 263 scores (upvote - downvote) and it was viewed more
than 174,000 times as of today. Therefore, a new developer
looking for a solution for this task is expected to be con-vinced
to use the solution provided in the answer. However, the
provided solution has one of the security vulnerabilities
presented in Section 4.2 (Listing 1). Therefore, the provided
solution, if used as is, will introduce potential C++ secu-rity
vulnerability in the developer’s software. Our browser
extension aims to prevent developers from reusing such
vulnerable code snippets, as well as to recommend them of
better alternatives, i.e., non-vulnerable code snippets in other
Stack Overflow posts. As we recall from our survey of GitHub
developers, such a browser extension was also desired by the
survey respondents.

The design of the plug-in allows it to be programming
language-neutral, i.e., the underlying architecture of the
plug-in allows to be used to warn of security vulnerabilities
for any given programming languages. The architecture is
REST-based, i.e., this is a client-server model where the
plug-in acts as the client and the security vulnerabilities
database resides in a server. Therefore the database can
be updated with new vulnerabilities information from any
programming language. The plug-in only needs to know the
ID of a Stack Overflow post and the code example provided
in the post to consult with the server about whether the
shared code example is vulnerable or not.

While the focus of this paper is to study the prevalence
and propagation of vulnerabilities of C++ code examples
shared in Stack Overflow, the plug-in is developed as a
proof-of-concept tool to demonstrate what we can do with
the results of this study. However, given that the database
with the security vulnerabilities can be updated without any
change in the plug-in interface or the extension itself, new
vulnerabilities can be added offline and continuously. This
flexibility allows us to potentially open the database to the
entire community of developers who are security experts.
The inputs from the experts can be used to populate the
database, which then can be viewed through the plug-in
interface. This semi-private access to the database, while it
remains open, can influence developers to voluntarily share
their knowledge. The overall tool, i.e., the extension and the
database then can be further improved based on inputs
from the developers. This approach is consistent with
previous study, e.g., Subramanian et al. [19] developed a
browser plug-in as a proof-of-concept tool to show that
code examples from Stack Overflow can be automatically
included into Javadocs, but left the overall effectiveness of
the tool as future work. In addition, we have also open-
sourced the entire code base of the developed plug-in to
promote its extensions by the community [17].

15

7 THREATS TO VALIDITY

We now discuss the threats to validity of our study follow-
ing the guidelines for case study research.

Construct validity threats: Concern the relation between
theory and observation. In our study, threats to the
construct validity are mainly due to measurement errors.

In our study, we manually analyzed 2056 C++ code snip-
pets. The code snippets are selected from 2056 code clone
groups. Together, the clone groups contain all of the 72,483
code snippets in our study. Each of the 72,483 code snippets
belongs to one of the 2056 clone groups. We produced the
clone groups using SourcererCC. We use the state of the art
clone detection tool, SourcererCC [60], to identify clones
between Stack Overflow C++ code snippets. We applied
tokenization at the file level in SourcererCC and set the
similarity degree to 100% to find all the C++ code snippets in
Stack Overflow that are exactly similar to each other (i.e.,
Type-1 clones). We left all the other settings of SourcererCC to
their default values. Therefore, the reduction of code snippets
produces no threat to our analysis. In other words, our use of
SourcererCC has 100% clone detection accuracy for Type-1
with no false negatives. Therefore, when a rep-resentative of a
group is reviewed for a vulnerability, the result is valid for the
whole sample to which it belongs. Any finding obtained using
the representatives of the groups generalizes to the whole
dataset without loss of accuracy.

Since SourcererCC does not support block-level tokeniza-
tion for C++ code, we designed a rule based method to track
vulnerable C++ code snippets from Stack Overflow to GitHub.
To evaluate this method, we randomly selected five GitHub
files with migration from each of the 69 vulnerable answers;
i.e., a total of 296 GitHub files and reviewed them manually.
We found the approach to be 78.72% accurate. Another
concern is related to false negatives that Syntaxnet
[78] may have produced. Although the limitations of these
different techniques may have resulted in us missing some
vulnerable C++ code migrated to a GitHub project, they do
not pose a threat to the validity of our findings since all
vulnerability migrations reported in this paper were verified
manually by multiple code reviewers. The number of
vulnerability migrations reported in this paper constitutes a
lower bound. There is likely much more vulnerability
migrations from Stack Overflow to GitHub projects.

Internal validity threats: To avoid any misrepresentation
of the information contained in the SOTorrent dataset used
in this paper, we took care to remove migrated Stack Over-
flow code snippets with missing GitHub links, as well as
posts that were not correctly tagged. Removing these code
snippets from our analysis does not pose a threat to the
validity of our findings since as we mentioned above, the
number of vulnerability migrations reported in this paper
constitutes a lower bound. We carefully verified manually all
the vulnerability migrations reported in this paper.

External validity threats: Concern the possibility to gener-
alize our results. The findings reported in this paper were

obtained by analyzing Stack Overflow. They therefore may
not generalize to other Q&A websites. However, since the
GitHub developers that we consulted did not refute the
validity of any of the vulnerabilities that we reported to them
and the fixes that we recommended, we believe that the
results reported in this paper are strong. They offer a
reliable starting point for further studies on the preva-lence
and propagation of vulnerable code snippets from Q&A
websites. Another potential threat to external validity
concerns the generalisability of the feedback collected from
developers. In fact, while recommending fixes to GitHub
developers, we conducted a small survey to collect their
opinion about the quality of our recommendations and the
potential benefits of automatic tool supports that could warn
users about the presence of vulnerabilities in code shared
on Stack Overflow. Since the focus of our work was not the
survey but rather the understanding of the preva-lence and
propagation of vulnerable C++ code snippets from Stack
Overflow to GitHub, we did not conduct a large scale
survey. Nevertheless, we followed existing literature in
Software Engineering [51], [52], [79] while designing our
survey and the options for Likert scale [51], [52], [79], as
well as during the development of our browser plug-in (that
builds on the findings of the survey). Browser plug-ins are
commonly developed in software engineering research
projects to exemplify how results can be leveraged in
practice, e.g., a browser plug-in was used to produce live
software documentation from Stack Overflow [19].

8 CONCLUSION

Summary. In this paper, we have analyzed vulnerabilities
in C++ code snippets shared on Stack Overflow and their
migration to GitHub projects. This is the first study that
examines the security issues of C++ code examples shared
on Stack Overflow. We have investigated security vulnera-
bilities in the C++ code snippets shared on Stack Overflow
over a period of 10 years. From the 72,483 reviewed code
snippets used in at least one project hosted on GitHub, we
found a total of 99 vulnerable code snippets categorized
into 31 types. Bad coding practices, improper check for
unusual or exceptional conditions and improper input
validation were the most prevalent types of vulnerabilities.
The 99 vulnerable code snippets found in Stack Overflow
were reused in a total of 2859 GitHub projects. Information
about the detected vulnerabilities were presented to
developers of the studied GitHub projects. Although they
acknowledged the vulnerabilities, many of them are still not
corrected today.

Implications. Stack Overflow like other crowd-sourced
platforms is designed to stimulate knowledge exchanges
between developers. However, this platform is not equipped
with a robust mechanism to ensure the good quality of an-
swers and code snippets exchanged by its users. The incen-
tive system (e.g., reputation, badges, upvotes, downvotes) in
Stack Overflow was designed partly to encourage users to
share quality contents. However, this approach works only
when each user is responsible and–or knowledgeable enough
about every details of the shared knowledge, which

16

given the complex nature of software development is a dif-
ficult task. Our survey of software developers who reused
vulnerable code snippets from Stack Overflow provided us
with ideas for tools and techniques that can assist develop-
ers reusing code. For example, the respondents asked for
both offline and online tools to inform them of any potential
vulnerability in a shared code example. Consequently, we
developed a browser extension that can warn developers of
such vulnerable code snippets in Stack Overflow. In sum-
mary, software practitioners (e.g., developers), researchers,
and Stack Overflow can benefit from our study results as
follows: 1) The developers can use our developed browser
extension to stay aware of potential vulnerabilities in the
shared code, 2) Software engineering research can further
extend our findings to analyze the diverse security aspects
in the shared code and to ensure that such compromised
code snippet are not included in tools built to support
software development activities (e.g., tools recommending
high quality posts, answers to an unanswered question, and
so on) [21], [22], [23], [24]. 3) Finally, Stack Overflow can
introduce a new security-focused incentive system to
improve the knowledge sharing process, e.g., introduction
of security badges.

Future Work. Our future work focuses on replicating the
findings of this study to other domains (e.g., other
programming languages) and venues (e.g., other crowd-
sourced platforms). Based on the obtained results, we will
develop new tools and techniques to promote the sharing of
secured code examples, to educate developers about exist-
ing vulnerabilities, and recommend them better alternatives
to an existing vulnerable code snippet.

REFERENCES

[1] Rabe Abdalkareem, Emad Shihab, and Juergen Rilling. On code

reuse from stackoverflow: An exploratory study on android apps.
Information and Software Technology, 88:148–158, 2017.

[2] Wayne C Lim. Effects of reuse on quality, productivity, and
economics. IEEE software, 11(5):23–30, 1994.

[3] Katsuro Inoue, Yusuke Sasaki, Pei Xia, and Yuki Manabe. Where
does this code come from and where does it go?-integrated code
history tracker for open source systems. In Proceedings of the
34th International Conference on Software Engineering, pages
331–341. IEEE Press, 2012.

[4] Christoffer Rosen and Emad Shihab. What are mobile developers
asking about? a large scale study using stack overflow. Empirical
Software Engineering, 21(3):1192–1223, 2016.

[5] Caitlin Sadowski, Kathryn T Stolee, and Sebastian Elbaum. How
developers search for code: a case study. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering,
pages 191– 201. ACM, 2015.

[6] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris
Burns. What makes a good code example?: A study of pro-
gramming q&a in stackoverflow. In 2012 28th IEEE International
Conference on Software Maintenance (ICSM), pages 25–34.
IEEE, 2012.

[7] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim,
Michelle L Mazurek, and Christian Stransky. You get where you’re
looking for: The impact of information sources on code security. In
2016 IEEE Symposium on Security and Privacy (SP), pages 289–
305. IEEE, 2016.

[8] Felix Fischer, Konstantin Bottinger,¨ Huang Xiao, Christian Stran-
sky, Yasemin Acar, Michael Backes, and Sascha Fahl. Stack
over-flow considered harmful? the impact of copy&paste on
android application security. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 121–136. IEEE, 2017.

[9] Akito Monden, Daikai Nakae, Toshihiro Kamiya, Shin-ichi Sato,

and Ken-ichi Matsumoto. Software quality analysis by code
clones in industrial legacy software. In Proceedings Eighth IEEE
Symposium on Software Metrics, pages 87–94. IEEE, 2002.

[10] Di Yang, Pedro Martins, Vaibhav Saini, and Cristina Lopes. Stack
overflow in github: any snippets there? In 2017 IEEE/ACM 14th
In-ternational Conference on Mining Software Repositories
(MSR), pages 280–290. IEEE, 2017.

[11] Pei Xia, Makoto Matsushita, Norihiro Yoshida, and Katsuro Inoue.
Studying reuse of out-dated third-party code in open source projects.
Information and Media Technologies, 9(2):155–161, 2014.

[12] Chaiyong Ragkhitwetsagul, Jens Krinke, Matheus Paixao, Giuseppe
Bianco, and Rocco Oliveto. Toxic code snippets on stack overflow.
IEEE Transactions on Software Engineering, 2019.

[13] Le An, Ons Mlouki, Foutse Khomh, and Giuliano Antoniol. Stack
overflow: a code laundering platform? In 2017 IEEE 24th Interna-
tional Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 283–293. IEEE, 2017.

[14] TIOBE Company. TIOBE Index for January 2019. https://www.
tiobe.com/tiobe-index/, 2019. [Online; accessed 19-January-2019].

[15] Sebastian Baltes, Lorik Dumani, Christoph Treude, and Stephan
Diehl. Sotorrent: Reconstructing and analyzing the evolution of
stack overflow posts. In Proceedings of the 15th International
Conference on Mining Software Repositories, pages 319–330.
ACM, 2018.

[16] Sebastian Baltes, Christoph Treude, and Stephan Diehl. Sotorrent:
Studying the origin, evolution, and usage of stack overflow code
snippets. In Proceedings of the 16th International Conference on
Mining Software Repositories, pages 191–194. IEEE Press, 2019.

[17] https://github.com/paper-materials-crowd-sourced/materials,
2020.

[18] https://doi.org/10.5281/zenodo.3991017, 2020.
[19] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes.

Live API documentation. In Proceedings of 36th International
Con-ference on Software Engineering, pages 643–652, 2014.

[20] Bowen Xu, Zhenchang Xing, Xin Xia, and David Lo. AnswerBot:
automated generation of answer summary to developers technical
questions. In Proc. 32nd IEEE/ACM International Conference on
Automated Software Engineering, pages 706–716, 2017.

[21] Yuan Ya, Hanghang Tong, Tao Xie, Leman Akoglu, Feng Xu, and Jian
Lu. Detecting high-quality posts in community question answering
sites. Journal of Information Sciences, 302(1):70–82, 2015.

[22] F. Maxwell Harper, Daphne Raban, Sheizaf Rafaeli, and Joseph
A. Konstan. Predictors of answer quality in online q&a sites. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 865–874, 2008.

[23] Lei Li, Daqing He, Wei Jeng, Spencer Goodwin, and Chengzhi
Zhang. Answer quality characteristics and prediction on an
academic q&a site: A case study on researchgate. In Proceedings
of the 24th International Conference on World Wide Web, pages
1453– 1458, 2015.

[24] Maarten Duijn, Adam Kucera, and Alberto Bacchelli. Quality questions
need quality code: Classifying code fragments on stack overflow. In
Proceedings of the IEEE/ACM 12th Working Conference on Mining
Software Repositories, pages 410–413, 2015.

[25] Gias Uddin and Martin P. Robillard. How api documentation fails.
IEEE Softawre, 32(4):76–83, 2015.

[26] Bogdan Vasilescu, Vladimir Filkov, and Alexander Serebrenik.
Stackoverflow and github: Associations between software devel-
opment and crowdsourced knowledge. In Proc. 2013 International
Conference on Social Computing, pages 188–195, 2013.

[27] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt,
Hridesh Rajan, and Miryung Kim. Are code examples on an online
q&a forum reliable? a study of api misuse on stack overflow. In
Proc. 32nd IEEE/ACM International Conference on Software
Engineering, page 12, 2018.

[28] Sarah Nadi, Stefan Kruger,¨ Mira Mezini, and Eric Bodden. Jump-ing
through hoops: Why do java developers struggle with cryp-tography
apis? In Proceedings of the 38th International Conference on Software
Engineering, pages 935–946. ACM, 2016.

[29] Shaowei Wang, Tse-Hsun Chen, and Ahmed E Hassan. Under-
standing the factors for fast answers in technical q&a websites:
An empirical study of four stack exchange websites. In
Proceedings of the 40th International Conference on Software
Engineering, pages 884– 884, 2018.

[30] Akond Rahman, Asif Partho, Patrick Morrison, and Laurie
Williams. What questions do programmers ask about configu-

17

ration as code? In Proceedings of the 4th International Workshop on
Rapid Continuous Software Engineering, pages 16–22. ACM, 2018.

[31] Anton Barua, Stephen W Thomas, and Ahmed E Hassan. What are
developers talking about? an analysis of topics and trends in stack
overflow. Empirical Software Engineering, 19(3):619–654, 2014.

[32] Akond Rahman, Effat Farhana, and Nasif Imtiaz. Snakes in par-
adise?: insecure python-related coding practices in stack
overflow. In Proceedings of the 16th International Conference on
Mining Software Repositories, pages 200–204. IEEE Press, 2019.

[33] Margaret-Anne Storey, Christoph Treude, Arie van Deursen, and Li-Te
Cheng. The impact of social media on software engineering practices
and tools. In Proceedings of the FSE/SDP workshop on Future of
software engineering research, pages 359–364. ACM, 2010.

[34] Joel Brandt, Philip J Guo, Joel Lewenstein, Mira Dontcheva, and
Scott R Klemmer. Two studies of opportunistic programming: in-
terleaving web foraging, learning, and writing code. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 1589–1598. ACM, 2009.

[35] Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak,
and Bjorn¨ Hartmann. Design lessons from the fastest q&a site in
the west. In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 2857–2866. ACM, 2011.

[36] Eduardo C Campos, Martin Monperrus, and Marcelo A Maia.
Searching stack overflow for api-usage-related bug fixes using
snippet-based queries. In Proceedings of the 26th Annual Inter-
national Conference on Computer Science and Software
Engineering, pages 232–242. IBM Corp., 2016.

[37] Manziba Akanda Nishi, Agnieszka Ciborowska, and Kostadin
Damevski. Characterizing duplicate code snippets between stack
overflow and tutorials. In Proceedings of the 16th International
Conference on Mining Software Repositories, pages 240–244.
IEEE Press, 2019.

[38] Sebastian Baltes and Stephan Diehl. Usage and attribution of
stack overflow code snippets in github projects. Empirical
Software Engineering, 24(3):1259–1295, 2019.

[39] Na Meng, Stefan Nagy, Danfeng Yao, Wenjie Zhuang, and Gustavo
Arango-Argoty. Secure coding practices in java: Challenges and
vulnerabilities. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE), pages 372–383. IEEE, 2018.

[40] Mengsu Chen, Felix Fischer, Na Meng, Xiaoyin Wang, and Jens
Grossklags. How reliable is the crowdsourced knowledge of security
implementation? In Proceedings of the 41st International Conference
on Software Engineering, pages 536–547. IEEE Press, 2019.

[41] Muhammad Sajidur Rahman. An empirical case study on stack
overflow to explore developers’ security challenges. Master’s
thesis, Kansas State University, 2016.

[42] Xin-Li Yang, David Lo, Xin Xia, Zhi-Yuan Wan, and Jian-Ling Sun.
What security questions do developers ask? a large-scale study
of stack overflow posts. Journal of Computer Science and
Technology, 31(5):910–924, 2016.

[43] Sascha Fahl, Marian Harbach, Thomas Muders, Lars
Baumgartner,¨ Bernd Freisleben, and Matthew Smith. Why eve
and mallory love android: An analysis of android ssl (in) security.
In Proceedings of the 2012 ACM conference on Computer and
communications security, pages 50–61. ACM, 2012.

[44] John Viega, Jon-Thomas Bloch, Yoshi Kohno, and Gary McGraw.
Its4: A static vulnerability scanner for c and c++ code. In
Proceedings 16th Annual Computer Security Applications
Conference (ACSAC’00), pages 257–267. IEEE, 2000.

[45] Andrew C Myers and Andrew C Myers. Jflow: Practical mostly-
static information flow control. In Proceedings of the 26th ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 228–241. ACM, 1999.

[46] Stephen Turner. Security vulnerabilities of the top ten program-ming
languages: C, java, c++, objective-c, c#, php, visual basic, python,
perl, and ruby. Journal of Technology Research, 5:1, 2014.

[47] Akond Rahman, Chris Parnin, and Laurie Williams. The seven
sins: security smells in infrastructure as code scripts. In
Proceedings of the 41st International Conference on Software
Engineering, pages 164–175. IEEE Press, 2019.

[48] Mansooreh Zahedi, Muhammad Ali Babar, and Christoph Treude.
An empirical study of security issues posted in open source
projects. In Proceedings of the 51st Hawaii International
Conference on System Sciences, 2018.

[49] Daniel Pletea, Bogdan Vasilescu, and Alexander Serebrenik. Secu-rity
and emotion: sentiment analysis of security discussions on

github. In Proceedings of the 11th working conference on mining
software repositories, pages 348–351. ACM, 2014.

[50] Yasemin Acar, Christian Stransky, Dominik Wermke, Michelle L
Mazurek, and Sascha Fahl. Security developer studies with github
users: Exploring a convenience sample. In Thirteenth Symposium on
Usable Privacy and Security (fSOUPSg 2017), pages 81–95, 2017.

[51] Gias Uddin, Olga Baysal, Latifa Guerrouj, and Foutse Khomh.
Understanding how and why developers seek and analyze API-related
opinions. IEEE Transactions on Software Engineering, 2019.

[52] Martin P. Robillard and Robert DeLine. A field study of API
learning obstacles. Empirical Software Engineering, 16(6):703–
732, 2011.

[53] Eric Horton and Chris Parnin. Gistable: Evaluating the executabil-
ity of python code snippets on github. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME),
pages 217–227. IEEE, 2018.

[54] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, and Michele Lanza. Mining stackoverflow to turn the ide
into a self-confident programming prompter. In Proceedings of the
11th Working Conference on Mining Software Repositories,
pages 102–111. ACM, 2014.

[55] Christoph Treude and Martin P Robillard. Augmenting api docu-
mentation with insights from stack overflow. In 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE),
pages 392–403. IEEE, 2016.

[56] Tommi Unruh, Bhargava Shastry, Malte Skoruppa, Federico
Maggi, Konrad Rieck, Jean-Pierre Seifert, and Fabian
Yamaguchi. Leveraging flawed tutorials for seeding large-scale
web vulnera-bility discovery. In 11th fUSENIXg Workshop on
Offensive Technolo-gies (fWOOTg 17), 2017.

[57] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt,
Hridesh Rajan, and Miryung Kim. Are code examples on an online
q&a forum reliable? 2018.

[58] Na Meng, Stefan Nagy, Danfeng Yao, Wenjie Zhuang, and Gustavo
Arango-Argoty. Secure coding practices in java: Challenges and
vulnerabilities. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE), pages 372–383. IEEE, 2018.

[59] Algoritmia. Algorithmia syntaxnet programming language
identification. https://cdn.algorithmia.com/algorithms/
PetiteProgrammer/ProgrammingLanguageIdentification, 2020.
[Online; accessed 19-January-2019].

[60] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy,
and Cristina V Lopes. Sourcerercc: Scaling code clone detection to
big-code. In 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE), pages 1157–1168. IEEE, 2016.

[61] Aaron Ballman. SEI CERT C++ Coding Standard, Rules for Develop-
ing Safe, Reliable, and Secure Systems in C++. CERT of Carnegie
Mellon University, https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=454220, 2016.

[62] Walter E. Brown. Deprecating rand() and Friends. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3775.pdf, 2013.
[Accessed 27 Jun. 2019].

[63] Justus J. Randolph. Free-Marginal Multirater Kappa: An Alterna-
tive to Fleiss’ FixedMarginal Multirater Kappa. https://files.eric.
ed.gov/fulltext/ED490661.pdf, 2005. [Accessed 27 Jun. 2019].

[64] Community developed list of common software security weak-
nesses. CWE Mitre. https://cwe.mitre.org/. [Accessed 27 July.
2018].

[65] Community developed list of common software security weak-
nesses. CWE 193. https://cwe.mitre.org/data/definitions/193. html.
[Accessed 27 July. 2018].

[66] Community developed list of common software security weak-
nesses. CWE 754. https://cwe.mitre.org/data/definitions/754. html.
[Accessed 27 July. 2018].

[67] http://c-faq.com/lib/randrange.html. [Accessed 12 July. 2018].
[68] https://docs.microsoft.com. [Accessed 12 July. 2018].
[69] Community developed list of common software security weak-

nesses. CWE 252. https://cwe.mitre.org/data/definitions/252. html.
[Accessed 30 July. 2018].

[70] Community developed list of common software security weak-
nesses. CWE 426. https://cwe.mitre.org/data/definitions/426. html.
[Accessed 30 July. 2018].

[71] Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Pierre Baldi,
and Cristina V Lopes. Oreo: Detection of clones in the twilight zone. In
Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 354–365. ACM, 2018.

18

[72] Inderjot Kaur Ratol and Martin P Robillard. Detecting fragile

comments. In Proceedings of the 32Nd IEEE/ACM International
Conference on Automated Software Engineering, pages 112–122.
IEEE Press, 2017.

[73] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. /*
icomment: Bugs or bad comments?*. In ACM SIGOPS Operating
Systems Review, volume 41, pages 145–158. ACM, 2007.

[74] Community developed list of common software security weak-
nesses. CWE 789. https://cwe.mitre.org/data/definitions/789. html.
[Accessed 30 July. 2018].

[75] Community developed list of common software security weak-
nesses. CWE 125. https://cwe.mitre.org/data/definitions/125. html.
[Accessed 30 July. 2018].

[76] Community developed list of common software security weak-
nesses. CWE 1019. https://cwe.mitre.org/data/definitions/1019.
html. [Accessed 30 July. 2018].

[77] Community developed list of common software security weak-
nesses. CWE 20. https://cwe.mitre.org/data/definitions/20.html.
[Accessed 30 July. 2018].

[78] Google Company. Announcing SyntaxNet: The World’s Most
Accurate Parser Goes Open Source. https://ai.googleblog.com/
2016/05/announcing-syntaxnet-worlds-most.html, 2019. [Ac-
cessed 29 Jun. 2019].

[79] Oleksii Kononenko, Olga Baysal, and Michael W. Godfrey. Code
review quality: How developers see it. In Proc. 38th International
Conference on Software Engineering, pages 1028–1038, 2016.

Morteza Verdi is an M.S. graduate of Shiraz
University. He obtained his BS degree in Infor-
mation Technology in 2016 from Birjand Uni-
versity of Technology. In December 2019, he
earned his M.S. in Cyber Security from Shiraz
University, where he worked under supervision of
Professor Ashkan Sami. His thesis was to find
vulnerability migrations between crowd-source
code sharing platforms and software reposito-ries.
His research interests are software engi-neering,
cyber-security and artificial intelligence.

Ashkan Sami is an Associate Professor of
Computer Science and Software Engineering at
Shiraz University and National Elite’s Founda-tion
Professor since 2019. Ashkan teaches and
conducts research on Cyber Security, Empirical
Software Engineering, Applied AI and Data Sci-
ence. He obtained his B.S. from Virginia Tech;
U.S.A. and PhD in 2006 from Tohoku University,
where his PhD became a Japanese national
project and earned him a tenured faculty position
at Tohoku University; Japan. He has led various

interdisciplinary and transdisciplinary research teams which focuses on
themes of current social problems to, create products or services and
publishes in quality venues. He has published in various high quality
venues like Empirical Software Engineering, MSR, IEEE Transactions on
Sustainable Energy, Engineering Applications of Artificial Intelli-gence,
Journal of Process Control and Gene. His current work on sys-tem and
software security has been presented in media outlets like BBC
Technology, The Register and professional sites like Stack Exchange
blogs. In 2017, his joint applied research project won recognition as a
nation’s applied research project of the year. Dr. Sami has advised more
than 100 M.Sc. and Ph.D. students. Web page: ashkan.synegy.ir

Jafar Akhondali is an M.S. student at Shiraz
University majoring in Cyber Security. He re-ceived
his B.S. from Shahid Chamran Univer-sity in 2017.
His research interests are software security,
wireless sensor networks and machine learning.
Jafar has been working on finding se-curity
problems in Stack Overflow since 2018 right after
entering his M.S. program at Shiraz University. He
has been actively involved in in-dustrial projects on
various aspects of Software Engineering and
Cyber Security for many years.

Foutse Khomh is a Full Professor of Soft-ware
Engineering at Polytechnique Montreal´ and FRQ-
IVADO Research Chair on Software Qual-ity
Assurance for Machine Learning Applica-tions. He
received a Ph.D in Software Engineer-ing from the
University of Montreal in 2011, with the Award of
Excellence. He also received a CS-Can/Info-Can
Outstanding Young Computer Sci-ence
Researcher Prize for 2019. His research interests
include software maintenance and evo-lution,
machine learning systems engineering,

cloud engineering, empirical software engineering, and software ana-
lytic. His work has received three ten-year Most Influential Paper (MIP)
Awards, and five Best/Distinguished paper Awards. He has served on
the program committees of several international conferences including
FSE, ICSM(E), SANER, MSR, ICPC, SCAM, ESEM and has reviewed
for top international journals such as JSS, EMSE, TSC, TSE and
TOSEM. He is program chair for Satellite Events at SANER 2015,
program co-chair of SCAM 2015, ICSME 2018, PROMISE 2019, and
ICPC 2019, general chair of ICPC 2018, SCAM 2020, and SANER
2020. He is on the steering committee of SANER (chair), MSR,
PROMISE, ICPC (chair), and ICSME(vice-chair). He initiated and co-
organized the Software Engineering for Machine Learning Applications
(SEMLA) symposium (https://semla.polymtl.ca/) and the RELENG (Re-
lease Engineering) workshop series (http://releng.polymtl.ca). He is on
the editorial board of multiple international journals, e.g., IEEE Soft-
ware, Wiley’s Journal of Software: Evolution and Process. Web page:
http://khomh.net/.

Gias Uddin is an Assistant Professor at the
University of Calgary. He is the director of ”Data
Intensive Software Analytics (DISA)” lab at the
university, where he leads initiatives on data in-
tensive software systems. Prior to that he was a
Senior Data Scientist at the Bank of Canada (the
central bank) and a software engineer at IBM
Watson Analytics. He completed a PhD from
McGill University (2018) and a Master’s from
Queen’s University, Canada (2008). He has
worked full-time at four Industrial companies

from 2008 till July 2020. In various increasingly senior roles in the Industry,
he has designed and developed software using innovative machine learning
techniques. The software are deployed successfully in production and are
being used by thousands of millions of users. Most of his PhD works were
completed while working full time at the Industry, a rewarding experience
that has shaped his research on the development of practical and
innovative solutions to Industrial and real-world problems. Specifically, his
research focuses on the engineering of intelligent AI-driven software
systems by harnessing diverse and hetero-geneous knowledge sources
that can address critical problems in tech-nical, social, and organizational
contexts. As such, his research work often lies at the intersection of
software engineering, machine learning, natural language processing,
human computer intersection, and social science. He has published papers
in peer-reviewed topmost confer-ences and journals in software
engineering. His recent paper at the 32nd IEEE/ACM Automated Software
Engineering Conference (ASE) was nominated for a best paper award.
Website: https://giasuddin.ca/

19

Alireza Karami Motlagh received his B.Sc. in
Software Engineering from Shahid Chamran
University of Ahvaz in 2017. He is currently an
M.Sc. student at Shiraz University majoring in
Artificial Intelligence. His major research inter-
ests are Software Security, System Resource
Management and Machine Learning. He has
professional experience as a security analyst
and code reviewer.

