
Memory Tagging:
how it improves C/C++ memory safety.

Compiler perspective.

Kostya Serebryany, Evgenii Stepanov, Vlad Tsyrklevich

(Google)

Oct 2018

From
 co

mpil
er

 p
ers

pe
cti

ve

1

Agenda

● ARM v8.5 Memory Tagging Extension

● Related compiler/optimizer challenges

2

C & C++ memory safety is a mess
● Use-after-free / buffer-overflow / uninitialized memory

● > 50% of High/Critical security bugs in Chrome & Android

● Not only security vulnerabilities
○ crashes, data corruption, developer productivity

● AddressSanitizer (ASAN) is not enough
○ Hard to use in production
○ Not a security mitigation

3

ARM Memory Tagging Extension (MTE)
● Announced by ARM on 2018-09-17

● Doesn’t exist in hardware yet
○ Will take several years to appear

● “Hardware-ASAN on steroids”
○ RAM overhead: 3%-5%
○ CPU overhead: (hoping for) low-single-digit %

4

https://community.arm.com/processors/b/blog/posts/arm-a-profile-architecture-2018-developments-armv85a

ARM Memory Tagging Extension (MTE)
● 64-bit only

● Two types of tags
○ Every aligned 16 bytes of memory have a 4-bit tag stored separately
○ Every pointer has a 4-bit tag stored in the top byte

● LD/ST instructions check both tags, raise exception on mismatch

● New instructions to manipulate the tags

5

Allocation: tag the memory & the pointer
● Stack and heap

● Allocation:
○ Align allocations by 16
○ Choose a 4-bit tag (random is ok)
○ Tag the pointer
○ Tag the memory (optionally initialize it at no extra cost)

● Deallocation:
○ Re-tag the memory with a different tag

6

Heap-buffer-overflow

char *p = new char[20]; // 0xa007fffffff1240

-32:-17 -16:-1 0:15 16:31 32:47 48:64

7

Heap-buffer-overflow

char *p = new char[20]; // 0xa007fffffff1240

p[32] = … // heap-buffer-overflow ⬛ ≠ ⬛

-32:-17 -16:-1 0:15 16:31 32:47 48:64

8

Heap-use-after-free

char *p = new char[20]; // 0xa007fffffff1240

-32:-17 -16:-1 0:15 16:31 32:47 48:64

9

Heap-use-after-free

char *p = new char[20]; // 0xa007fffffff1240

delete [] p; // Memory is retagged ⬛ ⇒ ⬛

p[0] = … // heap-use-after-free ⬛ ≠ ⬛

-32:-17 -16:-1 0:15 16:31 32:47 48:64

-32:-17 -16:-1 0:15 16:31 32:47 48:64

10

Probabilities of bug detection

int *p = new char[20];

p[20] // undetected (same granule)

p[32], p[-1] // 93%-100% (15/16 or 1)

p[100500] // 93% (15/16)

delete [] p; p[0] // 93% (15/16)

11

BTW: other existing implementations

● SPARC ADI
○ Exists in real hardware since ~2016 (SPARC M7/M8 CPUs)
○ 4-bit tags per 64-bytes of memory
○ Great, but high RAM overhead due to 64-byte alignment

● LLVM HWASAN
○ Software implementation similar to ASAN (LLVM ToT)
○ 8-bit tags per 16-bytes of memory
○ AArch64-only (uses top-byte-ignore)
○ Overhead: 6% RAM, 2x CPU, 2x code size

12

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/ch12s05s01.html

New MTE instructions (docs, LLVM patch)
IRG Xd, Xn

Copy Xn into Xd, insert a random 4-bit tag into Xd

ADDG Xd, Xn, #<immA>, #<immB>

Xd := Xn + #immA, with address tag modified by #immB.

STG [Xn], #<imm>

Set the memory tag of [Xn] to the tag(Xn)

STGP Xa, Xb, [Xn], #<imm>

Store 16 bytes from Xa/Xb to [Xn] and set the memory tag of [Xn] to the tag(Xn)

bit manipulations with the address tag

storing the memory tag

13

https://developer.arm.com/products/architecture/cpu-architecture/a-profile/exploration-tools?_ga=2.229642524.1054011236.1537375847-1574477847.1536946329
https://reviews.llvm.org/D52490
https://developer.arm.com/products/architecture/cpu-architecture/a-profile/docs/ddi0596/a/a64-base-instructions-alphabetic-order/irg-insert-random-tag
https://developer.arm.com/products/architecture/cpu-architecture/a-profile/docs/ddi0596/a/a64-base-instructions-alphabetic-order/irg-insert-random-tag#xd_sp
https://developer.arm.com/products/architecture/cpu-architecture/a-profile/docs/ddi0596/a/a64-base-instructions-alphabetic-order/irg-insert-random-tag#xn_sp
https://developer.arm.com/products/architecture/cpu-architecture/a-profile/docs/ddi0596/a/a64-base-instructions-alphabetic-order/addg-add-with-tag
https://developer.arm.com/products/architecture/cpu-architecture/a-profile/docs/ddi0596/a/a64-base-instructions-alphabetic-order/stg-store-allocation-tag
https://developer.arm.com/products/architecture/cpu-architecture/a-profile/docs/ddi0596/a/a64-base-instructions-alphabetic-order/stgp-store-allocation-tag-and-pair-of-registers#xn_sp
https://developer.arm.com/products/architecture/cpu-architecture/a-profile/docs/ddi0596/a/a64-base-instructions-alphabetic-order/stgp-store-allocation-tag-and-pair-of-registers
https://developer.arm.com/products/architecture/cpu-architecture/a-profile/docs/ddi0596/a/a64-base-instructions-alphabetic-order/stgp-store-allocation-tag-and-pair-of-registers#xt1
https://developer.arm.com/products/architecture/cpu-architecture/a-profile/docs/ddi0596/a/a64-base-instructions-alphabetic-order/stgp-store-allocation-tag-and-pair-of-registers#xt2
https://developer.arm.com/products/architecture/cpu-architecture/a-profile/docs/ddi0596/a/a64-base-instructions-alphabetic-order/stgp-store-allocation-tag-and-pair-of-registers#xn_sp

Relax and wait for the hardware?

14

No, compiler writers need to reduce the overhead

15

MTE overhead
● Extra logic inside LD/ST (fetching the memory tag)

○ Software can’t do much to improve it (???)

● Tagging heap objects
○ CPU: malloc/free become O(size) operations

● Tagging stack objects (optional, but desirable)
○ CPU: function prologue becomes O(frame size)
○ Stack size: local variables aligned by 16
○ Code size: extra instructions per function entry/exit
○ Register pressure: local variables have unique tags, not as simple as [SP, #offset]

16

Compiler-optimizations for MTE

17

Malloc zero-fill (1)
struct S { int64_t a, b; };
S *foo() { return new S{0, 0}; }

bl _Znwm

stp xzr, xzr, [x0]

bl _Znwm

18

Malloc zero-fill (2)
struct S { int64_t a, b; };
S *foo() { return new S{1, 2}; }

(*) Generated by GCC. LLVM produces worse code. BUG 39170

bl _Znwm

mov x3, 1 // (*)

mov x2, 2

stp x3, x2, [x0]

bl _Znwm_no_tag_memory

mov x3, 1

mov x2, 2

stgp x3, x2, [x0]

19

https://bugs.llvm.org/show_bug.cgi?id=39170

Malloc to stack conversion (see Hal’s talk)
● By itself makes things worse

○ Still need to tag memory, but adds code bloat

● Beneficial if tagging can be completely avoided
○ (heap-to-stack-to-registers)

● Could be combined with stack safety analysis (???)

20

http://llvm.org/devmtg/2018-10/talk-abstracts.html#lt3

Simple stack instrumentation
void foo() {

 int a;

 bar(&a);

}

...

sub sp, sp, #16

irg x0, sp // Copy sp to x0 and insert a random tag

stg [x0] // Tag memory with x0’s tag

bl bar

stg [sp], #16 // Before exit, restore the default

...

21

Rematerializable stack pointers
void foo() {

 int a, b, c; ...

 bar(&a); bar(&b); bar(&c);

}

irg x19, sp // “base” pointer with random tag

...

addg x0, x19, #16, #1 // address-of-a with semi-random tag

bl bar

addg x0, x19, #32, #2 // address-of-b with semi-random tag

bl bar

22

Store-and-tag
void foo() {

 int a = 42;

 bar(&a);

}

irg x0, sp

mov w8, #42

stgp x8, xzr, [x0] // store pair and tag memory

bl bar

23

Unchecked loads and stores
int foo() {

 int a;

 bar(&a);

 return a;

}

irg x0, sp

stg [x0]

bl bar // clobbers X0, but that’s OK …

ldr w0, [sp] // SP-based LD/ST do not check tags! (#imm offset)

24

Static stack safety analysis
● Do we need to tag an address-taken local variable?

○ Is buffer overflow possible?
○ Is use-after-return possible?
○ (Optional): is use of uninitialized value possible?

● Intra-procedural analysis is unlikely to help much

● Inter-procedural analysis:
○ Context-insensitive offset range and escape analysis for pointers in function arguments.
○ ~25% local variables (by count) proven safe; up to 60% with (Thin)LTO.
○ Patches are coming! (first one: https://reviews.llvm.org/D53336)

25

https://reviews.llvm.org/D53336

Challenge: how to test the stack safety analysis?
● Unittests for sure, but never enough

● We remove the checks that fire extremely rare, no good test suite
○ Similar problem is e.g. for bounds check removal in Java

● Use analysis in ASAN but do not eliminate the checks: report bugs in a
special way and notify developers (us)

26

More optimizations for MTE?
● Will these optimizations be useful for something else?

● What other optimizations are possible?

● Can we reuse/repurpose any existing optimizations?

27

More uses for MTE?
● Infinite Watchpoints?

● Race Detection (like in DataCollider)?

● Type Confusion Sanitizer? (for non-polymorphic types)

● Garbage Collection?

● ???

28

https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Erickson.pdf

Summary

● ARM MTE makes C++ memory-safer

● Small, but non-zero overhead

● Compilers must reduce the overhead

● ALSO: Please ask your CPU vendor to implement MTE

29

